http://www.modbee.com/24hour/opinions/story/1879119p-9804473c.html
Modbee.com
DANIEL WEINTRAUB: Research into baby food might reduce crime
The Sacramento Bee
(SMW) - In 20 years covering government and public policy in California, I've run into more than a few people who were obsessed with changing the world in small or large ways. Most have failed. Red Hodges refuses to be one of them. I first met this crusty retired oil man in the late 1990s, when he began dropping by my office near the Capitol. His story, in a way, was familiar to me. Prompted by his experience with a criminally delinquent son, Hodges was on a crusade to change the criminal justice system. Like many people I have met who face traumatic events personally or in their family, he had become a passionate advocate for a related cause.
But Hodges added an intriguing twist. He was convinced that an obscure metal - manganese - was somehow causing attention deficit disorder, and worse, in generations of young people. And he had done years of research gathering published papers and anecdotal evidence worldwide suggesting his theory was more than just a way for a desperate father to soothe his psychic wounds.
If his hunch was right, it had the potential to save California governments billions of dollars - and save countless people unnecessary pain. One other thing: Hodges had a sense of humor. Despite his serious passion, he realized that what he was saying sounded far-fetched, to put it mildly, and he was willing to poke fun at himself. He told me that most people upon meeting him and hearing his story thought he was some kind of "kook." I felt better knowing I was not alone.
I thought of all this a couple of weeks ago as I sat in a first-floor hearing room in the Capitol, where Assemblyman Mark Leno, a San Francisco Democrat, had convened the Public Safety Committee to hear from a panel of experts largely assembled by Hodges. Since I began following his project, Hodges, 72, has grown from gadfly to eccentric expert. With his prodding and financial support, a team of University of California scientists has researched his theory. And what they have found is disturbing: the possibility that the manganese in soy-based infant formula is causing brain damage in infants. Manganese is an element crucial to life but can also be toxic if absorbed in large amounts. The ancient Greeks called it the "madness metal," and research into the populations living around manganese mines and their workers has shown high levels of mental illness.
According to Dr. Francis Crinella, a clinical professor of pediatrics at UC Irvine, soy-based infant formula contains manganese in concentrations up to 80 times higher than human breast milk. Prompted by studies that showed elevated levels of manganese in the head hair of juvenile felons and hyperactive children, Crinella designed a study to isolate the effects of manganese on infant brain development.
The researchers fed a manganese supplement to baby rats to simulate the manganese given to human infants raised on soy formula. The rats fed the supplement did worse than a control group on homing tests in a maze and on a passive avoidance exercise testing their willingness to avoid an electric shock when entering a darkened compartment. Their brains also showed a steep decline in dopamine, a neuro-transmitter crucial to regulating emotions and behavior. At Hodges' urging and with more of his funding, researchers at UC Davis followed up the rat study with another using baby monkeys. Three groups of the primates were fed cow's milk formula, soy-based formula and a soy formula with extra manganese, and their behavior and interaction was then observed in the lab.
The monkeys fed the soy-based and manganese-fortified formula played less and were more clingy. "They would sort of hug each other and sit together," said Dr. Mari Golub, the Davis professor who designed the project. They were also more impulsive.
The study is ongoing.
All of this is still at a very early stage, but Crinella thinks the results are strong enough that the state should warn new mothers away from soy-based formula and advocate breast-feeding whenever possible for at least the baby's first six months.
The director of a trade association for the baby formula industry did not
return a call for comment. Manganese, Hodges told me with his usual dose of certainty, is "the world's first physiological marker for violent, abhorrent behavior." He is pushing the state to consider nutrition supplements for imprisoned youths who test positive for the metal, to help them overcome any brain damage they might have suffered. Leno said he was impressed by what he heard and plans to follow up."The basic premise here is that we are all made up of complex chemical equations ourselves, and we know that when they are off balance, our behavior is off balance," he said.
Nutrition: A Closer Look at Soy and Babies
By ERIC NAGOURNEY
NY Times
A <http://graphics7.nytimes.com/images/dropcap/a.gif new study raises the possibility that soy-based infant formulas, which account for one-fourth of all the formula used in the United States, may weaken babies' immune systems.
The warning comes in a study being published today in The Proceedings of the National Academy of Sciences. But the lead author, Dr. Paul S. Cooke of the University of Illinois, took pains to say there was no proof that soy formulas were harmful. "We are absolutely not saying these kids have been harmed, or are being harmed," Dr. Cooke said.
Previous studies have pointed toward the safety of the formulas. Nevertheless, Dr. Cooke said, the study suggests that components of soy that mimic the action of the hormone estrogen suppress the immune system. He said parents whose babies did not need to drink soy formula for health reasons, like allergies, should consider using milk-based formula instead, if they do not breast-feed.
The study focused on a hormone like component in soy known as genistein. Researchers gave genistein to mice in levels similar to that consumed by infants who drink soy formula, and found that the mice showed a large decrease in the number of immune cells and changes in the thymus, where immune cells mature.
Mead Johnson Nutritionals, which sells a soy formula under its Enfamil label, issued a statement defending the safety of soy formulas and questioning the methodology of the study. "The safety of soy formulas is well documented," the company said. "Food and regulatory agencies around the world have approved the use of soy protein in infant formulas based on decades of clinical studies."
Breast milk contains 4-6 micrograms per liter (mcg/L)
Milk-based infant formula contains about 30-50 mcg/L
Some soy formulas contain 200-300 mcg/L
For example, Carnation Good Start milk-based formula contains 7 mcg per 5 oz. serving while Carnation's soy-based formula, Alsoy, contains 34 mcg in the same 5 oz. serving.
http://www.guardian.co.uk/medicine/story/0,11381,891486,00.html
Move to curb soy formula milk sales
James Meikle, health correspondent
Saturday February 8, 2003
The Guardian
The safety of soya-based infant formula milk has been called into question by the government's scientific advisers, in a move that could result in it being available only on prescription. They fear children's sexual development and fertility as adults might be affected if they take the products during their first few months of life. Parents of about one in 50 babies who are not breast fed give their offspring the soy formula, and removing it from general sale would leave vegan mothers and others who wish to avoid cow's milk with no alternative. The advisers say there is "clear evidence" of potential risk from using the products and no evidence that the products confer any health benefit. There is no medical need for it either, they say, since other therapies could be prescribed for infants allergic to cow's milk protein.
Members of the scientific advisory committee on nutrition believe studies suggesting harmful effects on the sexual development of marmosets, and "extreme discomfort" in menstruation for women who had been fed soy formula years before, are cause for "significant concern". The use of the soy formula is already officially discouraged by the government, and breast milk is regarded as giving far better nourishment than formula milk. But the latest warnings about safety go much further than previous ones.
It is still unclear whether many doctors and health professionals would have to change their practice, but the department of health will have to consider the review if other advisers endorse Sacn's view on Tuesday. Stephen Walsh, a nutritionist with the Vegan Society, said: "Vegans who cannot breast feed don't have any sensible alternative. The little human evidence put forward indicates no problem. There is a long history of use of soy formula, particularly in the United States, not just by vegans." The tougher stance on soy formula comes from part of a far wider review of evidence of the health risks and benefits of chemicals called phytoestrogens. These oestrogen-containing compounds that naturally occur in foods such as soy, may mimic or disrupt hormones in our bodies.
Data on the effect of phytoestrogens in humans is extremely limited, although there has been a lot of research in animals. Scientists are expected to call for infants, vegans and consumers of dietary supplements to be invited to join long-term studies.
Date: 5/1/2004; Publication: Mothering; Author: Daniel, Kaayla T.
Over the past decade, soy foods have become America's favorite health food. Newspapers, magazines, and best-selling health writers have proclaimed the "joy of soy" and promoted the belief that soy food is the key to disease prevention and maximum longevity.
The possibility that an inexpensive plant food could prevent heart disease, fight cancer, fan away hot flashes, and build strong bodies in more than 12 ways is seductive. The truth, unfortunately, is far more complex. Soy foods come in a variety of forms, including many heavily processed modern products. Even good forms of soy foods must be eaten sparingly--the way they have been eaten traditionally in Asia. Most important, many respected scientists have issued warnings stating that the possible benefits of eating soy should be weighed against the proven risks. Indeed, thousands of studies link soy to malnutrition, digestive distress, immune-system breakdown, thyroid dysfunction, cognitive decline, reproductive disorders and infertility--even cancer and heart disease.
Americans rarely hear anything negative about soy. Thanks to the shrewd public relations campaigns waged by Archer Daniels Midland (ADM), Protein Technologies International (PTI), the American Soybean Association, and other soy interests, as well as the Food and Drug Administration's (FDA) 1999 approval of the health claim that soy protein lowers cholesterol, soy maintains a "healthy" image.
This article is written for parents who need to know the risks of feeding soy formula to infants, or soy milk and other soy foods to growing children. It is designed for prospective mothers and fathers who need to know the links between soy foods, infertility, and birth defects. Finally, it will serve anyone considering soy as a preventive for menopausal symptoms, osteoporosis, cancer, heart disease, or other ills.
How much soy do Asians really eat?
Those who dare to question the benefits of soy tend to receive one stock answer: Soy foods couldn't possibly have a downside because Asians eat large quantities of soy every day and consequently remain free of most Western diseases. In fact, the people of China, Japan, and other countries in Asia eat very little soy. The soy industry's own figures show that soy consumption in China, Indonesia, Korea, Japan, and Taiwan ranges from 9.3 to 36 grams per day. (1) That's grams of soy food, not grams of soy protein alone. Compare this with a cup of tofu (252 gms) or soy milk (240 gms). (2) Many Americans today think nothing of consuming a cup of tofu, a couple glasses of soy milk, handfuls of soy nuts, soy "energy bars," and veggie burgers. Infants on soy formula receive the most soy of all, both in quantity and in proportion to body weight.
In short, there is no historical precedent for eating the large amounts of soy food now being consumed by infants fed soy formula and vegetarians who favor soy as their main source of protein, or for the large amounts of soy being recommended by Dr. Andrew Weil, Dr. Christiane Northrup, and many other popular health experts.
What's more, the rural poor in China have never seen--let alone feasted on--soy sausages, chili made with textured vegetable protein (TVP), tofu cheesecake, packaged soy milk, soy "energy bars," or other newfangled soy products that have infiltrated the American marketplace.
The right stuff
The ancient Chinese honored the soybean with the name "the yellow jewel" but used it as "green manure"--a cover crop plowed under to enrich the soil. Soy did not become human food until the Chou Dynasty (1134-246 B.C.), when the Chinese developed a fermentation process to make soybean paste, best known today by its Japanese name, miso. (3) Soy sauce--the natural type sold under the Japanese name shoyu--began as the liquid poured off during the production of miso. Two other popular fermented soy foods, natto and tempeh, entered the food supply between A.D. 1000 and A.D. 1800 in Japan and Indonesia, respectively.
Tofu came after miso. Legend has it that in 164 B.C., Lord Liu An of Huai-nan, China--a renowned alchemist, meditator, and ruler discovered that a puree of cooked soybeans could be precipitated with nigari (a form of magnesium chloride found in seawater) into solid cakes, called tofu. In Japan, as in China, tofu was rarely served as a main course anywhere except in monasteries. Its most popular form was--and is--as a few bland little blocks in miso soup or fish stock.
The Chinese almost never ate boiled or baked soybeans or cooked with soy flour except in times of famine. Modern soy products such as soy-protein isolate, TVP, soy-protein concentrate, and other soy-protein products made using high-tech industrial processes were unknown in Asia until after World War II. (4)
Contrary to popular belief, neither soy milk nor soy infant formula is traditional in Asia. Soy milk originated as a byproduct of the process of making tofu; the earliest reference to it as a beverage appeared in 1866. (5) By the 1920s and 1930s, it was popular in Asia as an occasional drink served to the elderly. (6-8) The first person to manufacture soy milk in China was actually an American--Harry Miller, a Seventh Day Adventist physician and missionary. (9) The first soy infant formulas in China were developed in the 1930s and have never been widely used. (10-14) Today, babies in Asia are almost always breastfed for at least the first six months, then switched to a dairy-based infant formula. Orphans and others who cannot be breastfed by a wet nurse are fed from birth on dairy formulas. (15) Claims that soybeans have been a major part of the Asian diet for more than 3,000 years, or from "time immemorial," are simply not true.
Processing matters
Soy in the West has been a product of the Industrial Revolution--an opportunity for technologists to develop cheap meat substitutes, to find clever new ways to hide soy in familiar food products, to formulate soy-based pharmaceuticals, and to develop a renewable, plant-based resource that could replace petroleum-based plastics and fuels.
For years, the soy protein left over from soy-oil extraction went to animals and poultry. Now that food scientists have discovered inexpensive ways to improve or disguise the color, flavor, "bite characteristics," and "mouth feel" of soy-protein-based products, soy is being aggressively marketed as a "people feed." Although the newer refining techniques yield blander, purer soy proteins than the "beany," hard-to-cover-up flavors of the past, the main reason that soy foods now taste and look better is the lavish use of unhealthy additives such as sugar and other sweeteners, salt, artificial flavorings, colors, and monosodium glutamate (MSG).
Soy now lurks in nearly 60 percent of the foods sold in supermarkets and natural food stores. Much of this soy is "hidden" in products where it wouldn't ordinarily be expected, such as in fast-food burgers and Bumblebee canned tuna. Soy is also a key ingredient in ersatz products with names like Soysage, Not Dogs, Fakin Bakin, Sham Ham, and TofuRella, which have been named after and made to look like the familiar meat and dairy products they are intended to replace.
There's nothing natural about these modern soy-protein products. Textured soy protein, for example, is made by forcing defatted soy flour through a machine called an extruder under conditions of such extreme heat and pressure that the very structure of the soy protein is changed. Production differs little from the extrusion technology used to produce starch-based packing materials, fiber-based industrial products, and plastic toy parts, bowls, and plates. (16)
The process of making soy-protein isolate (SPI) begins with defatted soybean meal, which is mixed with a caustic alkaline solution to remove the fiber, then washed in an acid solution to precipitate out the protein. The protein curds are then dipped into another alkaline solution and spray-dried at extremely high temperatures. SPI is then often spun into protein fibers using technology borrowed from the textile industry. These refining processes remove "off flavors," "beany" tastes, and some of the worst flatulence-producing components. They improve digestibility, but vitamin, mineral, and protein quality are sacrificed, and levels of carcinogens such as nitrosamines are increased. (17-22) SPIs appear in so many products that consumers would never guess that the Federation of American Societies for Experimental Biology (FASEB) decreed in 1979 that the only safe use for SPIs was for sealers for cardboard packages. (23)
antinutrients and toxins in soy
Scientists who have studied the use of soy protein in animal feeds over the years have discovered a number of components in soy that cause poor growth, digestive distress, and other health problems. (24-27) To list just a few of these: Protease inhibitors interfere with protein digestion and have caused malnutrition, poor growth, digestive distress, and pancreatitis. (28) Phytates block mineral absorption, causing zinc, iron, and calcium deficiencies. (29-34) Lectins and saponins have caused leaky gut and other gastrointestinal and immune problems. (35,36) Oxalates--surprisingly high in soy--may cause problems for people prone to kidney stones and women suffering from vulvodynia, a painful condition marked by burning, stinging, and itching of the external genitalia. (37,38) Finally, oligosaccharides give soy its notorious reputation as a gas producer. Although these sugars are present in all beans, soy is such a powerful "musical fruit" that the soy industry has identified "the flatulence factor" as a major obstacle that must be overcome for soy to achieve full consumer acceptance. (39,40) Apologists for soy dismiss such claims, saying that food processing and home cooking remove most of these antinutrients. In fact, modern processing removes most of them, but not all. The levels of heat and pressure needed to remove all protease inhibitors, for example, severely damage soy protein and make it harder to digest. The trick is to eliminate the most antinutrients while doing the least damage to the soy protein. Success varies widely from batch to batch. (41-44)
For years, the soy industry tried to improve the quality of animal feeds by finding better ways to get rid of these undesirable antinutrients. Having failed, producers routinely supplement animal feeds heavily with vitamins, minerals, and methionine, a sulfur-containing amino acid that is low in soy. Even so, makers of animal chows are still limited ill the amount of soy they can add without causing growth and fertility problems. Food processors making soy-protein products for people may or may not add these supplements. Generally, calcium and vitamin D are added to soy milk so it can compete with dairy products.
Today, the soy industry has switched tactics from trying to remove unwanted antinutrients to trying to convince people that they are actually a good thing. Protease inhibitors, saponins, and lectins are being touted as curers of cancer or lowerers of cholesterol, while phytates are being recommended for their ability to remove toxic minerals such as cadmium and excess iron from the body. (45-51) Although some of these uses look promising, it is important to note that researchers are not achieving these successes using regular soy foods. Most take carefully extracted components and administer them in carefully measured and monitored pharmaceutical doses. News headlines to the contrary, there is no reason to think that just eating a lot of soy foods will do the trick.
soy allergens
Soy is one of the top eight allergens that cause immediate hypersensitivity reactions such as coughing, sneezing, runny nose, hives, diarrhea, difficulty swallowing, and anaphylactic shock, Delayed allergic responses are even more common and occur anywhere from several hours to several days after the food is eaten. These have been linked to sleep disturbances, bed wetting, sinus and ear infections, crankiness, joint paint, chronic fatigue, gastrointestinal woes, and other mysterious symptoms. (52,53)
Soy allergies are on the rise for three reasons: the growing use of soy infant formula (now 20 to as percent of the formula market), the increase in soy-containing foods in grocery stores, the possibility of the greater allergenicity of genetically modified soybeans. (54) Although severe reactions to soy are rare compared to reactions to peanuts, tree nuts, fish, and shellfish, soy has been underestimated as a cause of food anaphylaxis. Recently, after a young girl in Sweden suffered an asthma attack and died after eating a hamburger that contained only 2.2 percent soy protein, Swedish researchers looked into a possible soybean connection. They concluded that the soy-in-the-hamburger case was not a fluke, and that minute amounts of soy "hidden" in regular food had caused four of the five deaths caused by allergic reactions in Sweden between 1993 and 1996. Of the children who suffered fatal attacks, all had been able to eat soy without any adverse reactions right up until the dinners that caused their deaths. (55) According to the Swedish Ministry of Health, children at highest risk are those who suffer from peanut allergies and asthma; parents of such children should make every effort to eliminate all soy from their children's diets. (56)
soy and the thyroid: a pain in the neck
More than 70 years of human, animal, and laboratory studies show that soybeans put the thyroid at risk. The chief culprits are the plant hormones in soy known as phytoestrogens or isoflavones. (57-59) The United Kingdom's Committee on Toxicology has identified several populations at special risk: infants on soy formula, vegans who use soy as their principal meat and dairy replacements, and men and women who self-medicate with soy foods and/ or isoflavone supplements in an attempt to prevent or reverse menopausal symptoms, cancer, or heart disease. (60)
Infants with congenital hypothyroidism need 18 to 25 percent higher doses of thyroxine drug than usual if they are bottle-fed with soy formula. (61) Likewise, adults who boost their thyroid with drugs such as Synthroid while also eating thyroid-inhibiting foods such as soy put extreme stress on their thyroids. Toxicologist Michael Fitzpatrick, PhD, points out that this is the way researchers induce thyroid cancers in laboratory animals. (62)
soy and reproduction: breeding discontent
Scientists have known since the mid-1940s that phytoestrogens can impair fertility. Fertility problems in cows, sheep, rabbits, cheetahs, guinea pigs, birds, and mice have all been reported. (63, 64) Although scientists discovered only recently that soy lowers testosterone levels, (65) tofu has traditionally been used in Buddhist monasteries to decrease the libido, and by Japanese women to punish straying husbands. Humans and animals appear to be the most vulnerable to the effects of soy estrogens prenatally, during infancy and puberty, during pregnancy and lactation, and during the hormonal shifts of menopause. Of all these groups, infants on soy formula are at the highest risk because of their small size and developmental phase, and because formula is their main source of nutrient. (66, 67)
A crucial time for the programming of the human reproduction system is right after birth--the very time when bottles of soy formula are given to many non-breastfed babies Normally during this period, the body surges with natural estrogens, testosterones, and other hormones that are meant to program the baby's reproductive development from infancy through puberty and into adulthood. For infants on soy formula, this programming may be interrupted. (68-70)
Male infants experience a testosterone surge during the first few months of life and produce androgens in amounts equal to those of adult men. So much testosterone at such a tender age is needed to program the body for puberty, the time when a male's sex organs should develop and he should begin to express male characteristics such as facial and pubic hair and a deep voice. If receptor sites intended for the hormone testosterone are occupied by soy estrogens, however, appropriate development may never take place. (71-74)
To date, most of the evidence damning soy formula can be found only in animal studies, because investigations in which humans' sex hormone levels are lowered experimentally cannot ethically be done. However, in the years since soy formula has been in the marketplace, parents and pediatricians have reported growing numbers of boys whose physical maturation is either delayed or does not occur at all. Breasts, underdeveloped gonads, undescended testicles (cryptorchidism), and steroid insufficiencies are increasingly common. Sperm counts are also falling. (75-79) Soy formula is bad news for girls as well. Natural estrogen levels approximately double during the first month of life, then decline and remain at low levels until puberty. With increased estrogens in the environment and the diet, an alarming number of girls are entering puberty much earlier than normal. (80-82) One percent of girls now show signs of puberty, such as breast development or pubic hair, before the age of three. By the age of eight, 14.7 percent of Caucasian girls and 48.3 percent of African American girls have one or both of these characteristics. (83) The fact that blacks experience earlier puberties than whites is not a racial difference but a recent phenomenon. (84, 85)
Most experts blame this epidemic of "precocious puberty" on environmental estrogens from plastics, pesticides, commercial meats, etc., but some pediatric endocrinologists believe that soy is a contributor. (86)
Of all the estrogens found in the environment, soy is the likeliest explanation of why African American girls reach puberty so quickly. Since its establishment in 1974, the federal government's Women, Infants and Children (WIC) program has provided free infant formula to teenage and other low-income mothers while failing to encourage breastfeeding. Because of perceived or real lactose intolerance, black babies are much more likely than Caucasian babies to receive soy formula.
Early maturation in girls heralds reproductive problems later in life, including amenorrhea (failure to menstruate), anovulatory cycles (cycles in which no egg is released), impaired follicular development (follicles failing to mature and develop into healthy eggs), erratic hormonal surges, and other problems associated with infertility. Because the mammary glands depend on estrogen for their development and functioning, the presence of soy estrogens at a susceptible time might predispose girls to breast cancer, another condition that is on the rise and definitively linked to early puberty. (87)
Recently, a team of researchers headed by Brian L. Strom, MD, studied the use of soy formula and its long-term impact on reproductive health. They announced only one adverse finding: longer, more painful menstrual periods among women who'd been fed soy formula in infancy. (88) Dr. Strom's conclusion that the results were "reassuring" made newspaper headlines all over the world, though the data in the body of the report were anything but. Indeed, data left out of the headlines and buried in the report revealed higher incidences of allergies and asthma, and higher rates of cervical cancer, polycystic ovarian syndrome, blocked fallopian tubes, and pelvic inflammatory disease. (89) Although thyroid damage from soy formula has been the principal concern of critics for decades, the researchers excluded thyroid function as a subject for study. Not surprisingly, this study was funded in part by the infant-formula industry.
Most of the fears concerning soy formula have focused on estrogens. There are other problems as well, notably much higher levels of aluminum, fluoride, and manganese than are found in either breastmilk or dairy formulas. (90-96) All three metals have the potential to adversely affect brain development. Although trace amounts of manganese are vital to the development of the brain, toxic levels accrued from ingestion of soy formula during infancy have been found in children suffering from attention deficit disorders, dyslexia, and other learning problems. (97, 98)
Soy apologists sometimes argue that the plant hormones in soy formula could not possibly be harmful because Japanese women eat a lot of soy products and so must have high levels of phytoestrogens in their breastmilk. Researchers, however, have measured the soy isoflavones in breastmilk and found them low even in vegetarian women who consume copious quantities of tofu, soy milk, soy-protein shakes, and other soy foods. (99-101)
Limited evidence, however, suggests that vegetarian women who eat a lot of soy foods during pregnancy may put their infants at risk in terms of their future reproductive health, fertility, and possibly increased risk of breast cancer. All of the problems that have befallen infants on soy formula, as well as estrogen-related birth defects, have occurred (in animal studies, at least) to the offspring of mothers who were given high doses of soy during pregnancy. (102) One birth defect that has been linked to vegetarian diets in humans is hypospadias, a developmental disorder in which the opening of the penis is located on the underside of the shaft. (103)
Until soy estrogens are definitely linked to reproductive-tract abnormalities, infertility, and other health problems in humans, most health authorities recommend that we "wait and see" This could be a terrible mistake.
In the 1940s and 1950s, another estrogen, diethylstilbestrol (DES), was widely given to Western women early in their pregnancies in a misguided attempt to prevent miscarriage. That fact is relevant not only because DES bears a striking structural similarity to some plant estrogens--including soy isoflavones--but because it took more than 20 years before the full spectrum of harmful effects was observed. (104, 105)
DES is 100,000 times more potent than soy phytoestrogens. However, the large quantities of phytoestrogens in soy products are more than enough to counteract their lower potency. When the effects of isoflavones in fetal and neonatal animals have been studied, they have paralleled those observed in human infants exposed to DES. (106, 107) Recent studies indicate that the soy isoflavone known as genistein may be even more carcinogenic than DES. (108)
Yet the belief persists that soy hormones are "safe" because they are "weak" and "natural." Although the soy industry has claimed that soy estrogens are anywhere from 10,000 to 1,000,000 times weaker than the human estrogen estradiol, the correct figure is only 1,200 times as weak. (109) Though this still sounds quite weak, it is not--because of the quantity of these estrogens ingested by infants on soy formula, and by children and adults who eat soy every day. These individuals consume far more soy estrogens than were ever part of a traditional diet in Asia. The average isoflavones intake in China is 3 milligrams, or 0.05 mg per kilogram of body weight. In Japan, the figures range from 10 to 28 mg, or 0.17 to 0.47 isoflavones per kg of body weight. In contrast, infants receiving soy formula average 38 mg of isoflavones, which comes to a shocking 6.25 mg per kg of body weight. Compare that dose to the 0.47 mg per kg per day fed to healthy Japanese adult men and women who experienced thyroid suppression after just three months--or to the 0.75 mg per kg of isoflavones fed to American women who experienced hormonal changes sufficient to skew their menstrual cycles after just one month. (110) Although children and teenagers are less vulnerable than infants, their young bodies are still developing and are highly vulnerable to endocrine-system disruption by soy. And soy has been shown to pass through the placentas of pregnant women to their unborn babies.
Meanwhile, the jury is still out on whether soy might help alleviate menopausal symptoms or prevent osteoporosis and breast cancer. The soy industry's top scientists, convened at the Fifth International Symposium on the Role of Soy in Preventing and Reversing Chronic Disease (held in Orlando, Florida, September 21-24, 2003), conceded that the data are confusing and contradictory, with some studies suggesting that soy might be helpful, and others showing that soy contributes to osteoporosis and promotes breast cancer. What's certain is that the levels of soy estrogens that might possibly have a beneficial effect on hormonally related diseases have been proven to jeopardize the health of the thyroid. Likewise, the 25 gms of soy protein per day touted by the FDA to lower cholesterol (see sidebar, "Boon to the Industry: The FDA's Soy-Protein Health Claim") are very likely to harm the thyroid, and thus increase one of the risk factors for heart disease. The bottom line is that the safety of soy foods has yet to be proven, and that human beings have become guinea pigs in what Daniel M. Sheehan, formerly senior toxicologist with the FDA's National Center for Toxicological Research, has called a "large, uncontrolled and basically unmonitored human experiment." (111)
NOTES
For the endnotes to this article, please see
www.mothering.com/10-0-0/html/10-6-0/soy-notes.shtml.
How much soy is too much?
For Healthy People Not Sensitive to Soy:
Enjoying old-fashioned soy products such as miso, tempeh, natto, shoyu, and tamari should be no problem if they are ingested at the levels eaten traditionally in Asia. According to the soy industry's own figures, the Japanese eat the most soy; the average daily amount consumed there is about 36 grams. According to more recent studies, this amount is increasing and could now be as high as 50 gm per day. Even 50 gm is not very much--less than a quarter of a cup. On a weekly basis, a few cups of miso soup, a small serving of tempeh or natto, and the modest use of shoyu or tamari in cooking should not be a problem. I recommend miso made by small companies such as South River Miso and Ohsawa, which use old-fashioned, time-consuming aging methods. A little tofu, such as the three small cubes you'd typically find in your miso soup at a Japanese restaurant, should also not be a problem. I wouldn't even worry about the occasional ingestion of Boca Burger, Tofurky, Veat, or other highly processed, high-tech modern American soy foods. However, like all highly processed foods, they are best avoided.
For People Sensitized to Soy:
These people should avoid all soy. This group usually includes people who were given soy infant formula as babies. It also includes anyone who has suffered ill effects--the thyroid is usually affected first--from eating a lot of soy at any stage in life. Many perimenopausal and menopausal women already show a tendency toward hypothyroidism; soy may worsen their condition. For People Allergic to Soy: These people cannot afford to eat any soy at all. In certain high-risk children who are asthmatic and allergic to peanuts, sudden death is the first known reaction to even minute amounts of soy. Fatal reactions are rare, but four deaths meticulously documented in a Swedish study beg caution.
Areas of Concern:
As a clinical nutritionist, I see many clients suffering negative consequences from using soy as their main protein source in vegetarian and vegan diets. I see many midlife women who trace their low thyroid function, fatigue, weight gain, hair loss, and cognitive decline to daily consumption of soy milk, soy shakes, and soy "energy bars." I believe that soy consumption by babies, children, and teenagers could adversely affect their bone development and future reproductive health. Finally, pregnant women should eat minimal amounts of soy. The evidence is mounting that greater numbers of boys with birth defects such as hypospadias are born to soy-eating vegetarian moms. (1, 2)
NOTES
(1.) K. B. Declos et al., "Effects of Dietary Genistein Exposure During Development on Male and Female DC (Sprague-Dawley) Rats," Repro Toxicol 15, no. 6 (2001): 647-663
(2.) K. North, J. Golding, ALSPAC Study Team, "A Maternal Vegetarian Diet in Pregnancy Is Associated with Hypospadias," BJU Inter 85 (2000): 107-113.
--Kaayla T. Daniel
Boon to the industry the FDA's soy-protein health claim
In November 1999, the Food and Drug Administration (FDA) approved a health claim that permits food processors to label many soy products with the phrase "Diets low in saturated fat and cholesterol that include 25 grams of soy protein a day may reduce the risk of heart disease." (1) The soy industry has taken this claim straight to the bank. Since the FDA validated its claims that soy products are not only safe to eat but are "health foods," sales of soy products have achieved double-digit growth rates. (2)
The FDA bills itself as "the Nation's Foremost Consumer Protection Agency." (3) Its mission statement ends with the phrase "helping the public get the accurate, science-based information they need to use medicines and foods to improve their health," Yet the FDA's handling of these dubious claims about soy suggests nothing so much as an unholy alliance with big business,
The original petition--submitted by Protein Technologies International (PTI)--requested that the health claim be made for soy isoflavones, the plant estrogens found abundantly in soybeans. (4) Provided with only weak and conflicting proof that isoflavones lower cholesterol, and besieged by strong evidence of toxicity and endocrine disruption, the FDA had a duty to throw out PTI's petition. Instead, the agency took the unprecedented step of rewriting the PTI petition and substituting a claim for soy protein for the original one of isoflavone-rich soy protein. (5) Because the FDA is authorized to make rulings only on substances presented by petition, this initiative violated the agency's own regulations. (6)
Worse, the FDA speeded the decision-making process by reducing to only 30 days the time in which members of the public could protest. (7) In addition, the agency disregarded the testimony of top scientists at the FDA's own National Center for Toxicological Research, British government researchers, and other qualified experts, who provided damning evidence of danger from allergens, protease inhibitors, phytates, and goitrogens, as well as from the hormonally active isoflavones. (8-12) In the end, meticulously evidenced concerns were dismissed in favor of weak evidence that soy protein might lower cholesterol and in support of the widely accepted--but still unproven--theory that lowering cholesterol is the key to preventing heart disease.
Although the FDA was mandated by Congress to obtain "sufficient scientific evidence" of soy's cholesterol-lowering effect before approving any health claim to that effect, it relied almost entirely on just one study: a 1995 meta-analysis by James W. Anderson, PhD. (13) Meta-analyses are popular when researchers--or their industry sponsors--wish to draw general conclusions. They have been roundly criticized by many in the scientific community, including Sir John Scott, president of the Royal Society of New Zealand, who states: "Researchers substituting meta analysis for more rigorous trials are making faulty assumptions and indulging in creative accounting. Like is not being lumped with like, Little lumps and big lumps of data are being gathered together by various groups." (14)
Meta-analysts are also tempted to leave out studies that contradict or dilute the conclusions desired by the study's sponsor, which in this case was none other than Protein Technologies International. Indeed, Dr. Anderson chose to discard eight such studies. As for the 29 studies that better met his and PTI's needs, they offered some proof that substituting soy protein for animal protein would bring about a 7 to 20 percent lowering of cholesterol among hyperchotesterolemic individuals with levels over 260 mg/dl, but showed that soy would do little or nothing for individuals whose cholesterol was lower than 250 mg/dl. In plain English, soy protein is not likely to lower the cholesterol of the average person, and might even raise it. Meanwhile, 25 gms of soy protein a day has been shown to be capable of disrupting the endocrine system, with the most immediate effects felt by the thyroid. (15, 16)
The health claim that now appears in big, bold letters on packages of soy foods fails to warn the hapless consumer that the benefits are spurious, the risks are grave, and that the FDA, which calls itself the public's "number one consumer protector," is not only asleep on the job but in bed with big business.
NOTES
(1.) Food and Drug Administration, "Food Labeling: Health Claims: Soy Protein and Coronary Heart Disease," 21 CFR Part 101 (Docket 98PO683).
(2.) Jennifer Weber, "The Impact of the FDA Health Claim on the Soyfoods Market and Where Do We Go from Here?," Soyfoods 2001 conference (17-19 January 2001), Phoenix, AZ. Audio cassettes of the proceedings are available from the International Quality and Productivity Center (New York);
www.iqpc.com.
(3.) The phrase is used repeatedly on the FDA's website,
www.fda.gov. The site also includes the FDA's mission statement: "The FDA is responsible for protecting the public health by assuring the safety, efficacy, and security of human and veterinary drugs, biological products, medical devices, our nation's food supply, cosmetics, and products that emit radiation. The FDA is also responsible for advancing the public health by helping to spread innovations that make medicines and foods more effective, safer, and more affordable, and helping the public get the accurate, science based information they need to use medicines and foods to improve their health."
(4.) "Proposed Health Claim for Soy Protein-Containing Products and a Reduced Risk of Heart Disease," petition submitted by Marshall McMarcus, director of regulatory and trade affairs, Protein Technologies International, 4 May 1998.
(5.) Sally Fallen, Mary G. Enig, "Tragedy and Hype: The Third International Soy Symposium," Nexus 7, no. 3 (2000): 17-22, 73-74.
(6.) Valerie James, letter to Dockets Management Branch (HFA-305), Food and Drug Administration, quoting Section 403 James reminds the FDA that it is "not authorized to regulate on anything other than the petition to the agency That is, it cannot 'substitute' a variation on the claim and make a proposed (or actual) ruling on this substituted purpose." (16 September 1999)
(7.) Ibid.
(8.) Daniel M. Sheehan, Daniel R. Doerge, letter to Dockets Management Branch (HFA-305), 18 February 1999.
(9.) Michael Fitzpatrick, response to a submission by Protein Technologies International, n.d.;
www.soyonlineservice.co.nz
(10.) "IEH Assessment on Phytoestrogens in the Human Diet," Final Report to the Ministry of Agriculture, Fisheries and Food, United Kingdom (November 1997): 11.
(11.) Sue Dibb, codirector, the Food Commission UK, letter to Dockets Management Branch (HFA-305) on Docket No. 98P-0683, "Food Labelling: Health Claims; Soy Protein and Coronary Heart Disease" (25 January 1999).
(12.) I. E. Liener, letter to Dockets Management Branch, Food and Drug Administration (31 December 1998).
(13.) J. W. Anderson et al., "Meta Analysis of the Effects of Soy Protein Intake on Serum Lipids," N Eng J Med 333 (1995): 276-282.
(14.) Sir John Scott, quoted by Fallon and Enig. See Note 5.
(15.) M. Fitzpatrick, "Soy Formulas and the Effects of Isoflavones on the Thyroid," NZ Med J 113, no. 1103 (2000): 24-26.
(16.) Y. Ishizuki et al., "The Effects on the Thyroid Gland of Soybeans Administered Experimentally in Healthy Subjects," Nippon Naibundi Gakkai Zasshi 67 (1991): 622-629 Translation by Japan Communication Service, Wellington.
Kaayla T. Daniel
READER QUIZ
Just how much soy do Asians really eat per day?
a) a one-pound slab b) a quarter-pounder c) a portion the size of three peas d) healthy helpings of tofu lasagna, TVP chili, green salad with tofu dressing, tofu cheesecake, and several tall glasses of soymilk
The shocking answer is (c).
The truth is that the people of China, Korea, Vietnam, Thailand, Indonesia, Mongolia, and even Japan don't eat very much soy. The famous China-Cornell-Oxford Study--in which researchers headed by T. Colin Campbell of Cornell University traveled around China to survey the dietary habits of 6,500 adults in 130 rural villages reveals an average consumption of only 12 grams of legumes per day. For some unaccountable reason, no figures are available for soy foods alone. Probably only about one-third of this amount is soy. (1)
Peter Golbitz of Soyatech Inc., a soy industry information center based in Bar Harbor, Maine, reports that the average consumptions per year in China, Indonesia, Korea, Japan, and Taiwan are 3.4, 6.3, 9.0., 10.9, and 13 kg, respectively. (2) That boils down to only 9.3 to 36 gms per day. A cup of tofu weighs 262 gms. The Organisation for Economic Co-operation and Development estimates the consumption of soybean products in Japan to be 180 gms per day (3)--even less than the 36 gms other researchers have estimated. Finally, the type of food Asians eat is very different from what is appearing on the American table. Think small amounts of old-fashioned products like miso and tempeh, not soy sausages, soy burgers. chickenlike soy patties, TVP chili, tofu cheesecake, packaged soymilk, or the other ingenious new soy products that have infiltrated the American marketplace.
NOTES
(1.) J. Chen, T. C. Campbell et al., Diet Lifestyle and Mortality in China: A Study of the Characteristics of 65 Countries (Oxford University Press, Cornell University Press, China People's Medical Publishing House: 1990).
(2.) Ibid.
(3.) Organisation for Economic Co-operation and Development, "Food Consumption Statistics" (Paris OECD Publications, 1991).
--Kaayla T. Daniel
Kaayla T. Daniel, PhD, CCN, is a certified clinical nutritionist specializing in women's health issues.
She can be reached at www.wholesoystory.com.
This article is excerpted from The Whole Soy Story: The Dark Side of America's Favorite Health Food (New Trends, 2004).
COPYRIGHT 2004 Mothering Magazine
The Dark Side of America's Favorite Health Food Revealed: Soy
Link to article: http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225309
It's ironic that soy has become so accepted as a health food when, as Dr. Kaayla Daniel, author of the groundbreaking book The Whole Soy Story: The Dark Side of America's Favorite Health Food (http://en.groundspring.org/EmailNow/pub.php?module=URLTracker
&cmd=track&j=24953159&u=225310), states, thousands of studies link soy to malnutrition, digestive distress, immune-system breakdown, thyroid dysfunction, cognitive decline, reproductive disorders and infertility--even cancer and heart disease. This important issue is the premise behind her book, which is really a powerful expos? that reveals the truth about the soy myths that have infiltrated our culture.
Comments by Dr. Joe Mercola.
Below Dr. Daniel shares some important soy insights with us in an exclusive interview.
________________________________________
1. In terms of their effects on people's health, which of the soy food products on the market would you say are the worst?
The worst by far is soy formula because it's usually the only food nourishing the developing baby. Soy formula contains phytoestrogens that can disrupt the baby's thyroid, reproductive development and toxic levels of manganese that can cause neurological and brain damage associated with ADD/ADHD and violent tendencies. Babies on soy formula are also at higher risk for gastrointestinal damage, allergies, asthma, poor mineral absorption and lower intelligence. Although most patrons of health food stores know that it is important to breast feed, those who cannot often pick soy formula thinking it is the healthy choice. This choice is a formula for disaster. Contrary to popular belief, soy formula was never used traditionally in Asia.
For children and adults, the two worst product categories are soy protein products and soy oil. Unlike in Asia where people eat small amounts of whole soybean products, western food processors separate the soybean into two golden commodities--protein and oil. There's nothing safe or natural about this. Today's high-tech processing methods not only fail to remove the antinutrients and toxins that are naturally present in soybeans but leave toxic and carcinogenic residues created by the high temperatures, high pressure, alkali and acid baths and petroleum solvents.
The worst of today's soy protein products are soy protein isolate, soy protein concentrate, texturized vegetable protein and hydrolyzed vegetable protein. We find these ingredients in everything from shake powders, energy bars and veggie burgers to canned tuna. The worst soy oil products are margarines and shortenings made from partially hydrogenated soybean oil containing dangerous trans fatty acids. Most of the liquid vegetable oils sold in supermarkets also come from the soybean. To make these bland enough for public acceptance, the oils are subjected to heavy refining, deodorizing and light hydrogenation.
The fact that soy protein enjoys an excellent reputation but soy oil has been disgraced has led to an interesting marketing split among class lines. Upscale "health conscious" consumers pay dearly for the supposedly beneficial soy protein products in health food and gourmet stores.
The masses, meanwhile, get the soy oil in the form of the deadly hydrogenated oils lurking in nearly every fast food or packaged product--from crackers, cookies and other baked goods to canned foods, frozen French fries and TV dinners. However, upscale soy products are trickling down as the word "soy" becomes associated in the popular mind with "healthy." Although average Americans still think of a "Fake Steak" as a "Misteak," they don't seem to mind the fact that the industry has slipped "invisible" soys into every supermarket food imaginable.
Provided that the prices are low and flavor and texture remain familiar, soy is now perceived as a "healthful" additive, a "plus value." Meanwhile, over in the upper crust neighborhoods, soy oil has begun feeding off soy protein's healthy reputation and is starting to pop up in goods sold to the health food crowd, and not all of it is in the unrefined, cold-pressed "healthy" form. The product I'm most concerned about, however, is soy milk. Not because it's the worst product out there, but because some people are drinking so much of it.
2. How did soy, once a fringe product, end up being thought of as a "disease-preventive panacea"?
For years, the market for soy foods was limited. Americans not only loathed the beany taste and gas-producing effects of soy but thought of soy foods as "hippie foods," "poverty foods" or specialty foods for vegetarians. That presented a problem to the industry, which had lots of soy protein left over from soy oil production and nowhere to sell it. After all, they could only feed so much to animals before they rolled over with serious health problems. In order to make a good profit selling soy protein as a "people feed," the industry needed to make people want to eat it and to pay well for the privilege.
As a top gun marketer hired by the soy industry explained in 1975, "The quickest way to gain product acceptability in the less affluent society is to have the product consumed on its own merit by a more affluent society." Heightening consumer awareness of "health benefits" has done the trick. Millions of soy industry dollars have gone into funding "checkbook" medical research, sponsoring symposia, establishing FDA health claims and influencing of key dietitians and journalists. The campaign has led to a lot of soy hype, high hopes and higher profits.
3. With soy being added to so many U.S. food products (soy protein isolate, soybean oil, etc.) what advice do you have for consumers who are looking to avoid soy, but don't know where to start?
It's a real challenge, especially for those with soy allergies. But it's also an opportunity for us to make optimum food choices. The best--and maybe the only--way to completely avoid soy in the food supply is to buy whole foods and prepare them ourselves. For those who prefer to buy readymade and packaged products, I offer a free Special Report, "Where the Soys Are," on my Web site. It lists the many "aliases" that soy might be hiding under in ingredient lists--words like "boullion," "natural flavor" and "textured plant protein."
In addition, I'd like to share some good news. Help for the American consumer comes in January 2006 when the Food Allergen and Labeling and Consumer Protection Act goes into effect. The law requires food manufacturers to clearly state whether a product contains any of the top eight allergens--milk, eggs, peanuts, tree nuts, fish, shellfish, wheat or soy, and it requires the FDA to conduct inspections to ensure that manufacturers comply with practices to reduce or eliminate cross contamination with any major food allergens that are not intentional ingredients of a food. We have this new law thanks to the Food Allergy Initiative, a New York-based non-profit organization.
4. Many Americans are convinced that soy is the "cure-all" for heart disease, menopause symptoms, high cholesterol and more. What would you say to this large group of the population who still believe soy is a health food?
In general, we should be cautious about thinking of any food as a "miracle food"--especially ones being heavily promoted by the very food manufacturers who stand to benefit. We hear so many wonderful things about soy, but people need to remember that the possible benefits are outweighed by proven risks. Thousands of epidemiological, laboratory and clinical studies link soy to malnutrition, digestive problems, thyroid dysfunction, cognitive decline, reproductive disorders, immune system breakdown, even heart disease and cancer.
While it is certainly possible that several components of the soybean might be successfully developed into useful pharmaceutical drugs, it is inappropriate for the soy industry to recommend that the entire population of men, women and children self-medicate by eating massive amounts of soy foods. The public has not been properly warned that soy can have many side effects, that it is a substance that could be helpful in one stage of the life cycle but harmful in another and that dietary estrogens can interact cumulatively or exponentially with environmental estrogens.
5. What was your motivation for writing The Whole Soy Story?
Years ago I was excited about the claims being made for soy. The possibility that a simple, inexpensive food could prevent heart disease, fight cancer, fan away hot flashes, and build strong bodies in far more than 12 ways was seductive. The hype, however, did not match the reality of the many sick, soy-eaters that I saw in my life. At ashrams, I talked to vegetarians who waxed enthusiastic about their enlightened diets but who complained about loss of energy, "brain fog," thinning hair, gray skin, weight gain and gas.
When I taught classes, I met health-conscious professionals who came to me confused and frustrated because they had been advised to eat soy but felt worse than they had ever felt in their lives. As a nutritionist, I worked with many clients whose health improved dramatically after removing soy foods from their diets. These observations led me to question everything I'd ever heard or read about soy and to research the subject for myself.
6. Which types of soy are acceptable? Aren't some types of fermented soy (natto, tempeh, miso) healthy?
I personally eat old-fashioned fermented soy products such as miso, tempeh, natto, shoyu and tamari and believe they can be healthy in the context of a varied diet. Tofu is a precipitated product and less healthy, but I still enjoy it occasionally at vegetarian potlucks. Edamame--the green immature soybeans--contains fewer of the toxins found in the mature beans and so can be eaten occasionally. People who are not allergic or sensitized to soy can consume these whole soy products safely at the levels eaten traditionally in Asia, which is to say in small amounts as condiments, not staples.
Soy sprouts, by the way, are not healthy. Short-term germination increases the strength of soy's antinutrient fractions. In contrast, long-term sprouting plus fermentation will decrease and nearly eliminate them. Soy sprouts are mentioned in historical accounts as useful, sometime pharmaceuticals, not as a daily food.
7. You say in The Whole Soy Story that soy has never been proven safe and can cause irreversible harm to people's health. What are some of the most serious side effects that can result from this food?
I hesitate to use words like "irreversible" or "incurable." Adults who have been harmed by soy foods have a good chance of restoring their health if they remove all soy and other estrogenic foods from their diets, switch to a varied, organic omnivorous diet and use appropriate supplements as recommended by a wise doctor, nutritionist or other health professional. I most often see thyroid damage, infertility, menstrual problems, loss of sex drive, hair loss and digestive problems.
It's the damage from soy formula that may be irreversible. A crucial time for the programming of the human reproductive system is right after birth--the very time when many non-breastfed babies get bottle after bottle of soy formula. Normally during this period, the baby's body surges with natural estrogens, testosterone and other hormones needed to program the newborn's reproductive system to mature from infancy through puberty and into adulthood.
For infants on soy formula, the programming may be disturbed or interrupted. The phytoestrogens in soy formula--the isoflavones--bear a strong resemblance to the natural estrogens produced by the human body as well as to the synthetic estrogens found in contraceptive pills. Strictly speaking, soy estrogens are not hormones but "estrogen mimickers," but the bottom line is that human body mistakes them for hormones. Little boys who are estrogenized in this way may experience delayed or arrested puberty. Little girls who are overly estrogenized may go through premature puberty. We have many tragic stories.
8. What was the most shocking piece of information you learned while writing or researching The Whole Soy Story?
I began my research thinking there would be pros and cons to soy. Instead, I found overwhelming evidence of harm. I was startled by the sheer number of buried studies that needed to come to light, by the flagrant misrepresentation of data and the soy industry's talent for "spinning" unfavorable results. Right now, the FDA is seriously considering a soy- protein-prevents-cancer health claim as proposed by the Solae Company. The idea that the FDA could even consider soy for a cancer health claim is ludicrous on the face of it.
Soy isoflavones--the plant estrogens in soy most often credited with cancer prevention--are listed as "carcinogens "in many toxicology textbooks. They have also been proven to be mutagenic, clastogenic and teratogenic. Recent studies have even shown that soy accelerates the growth of breast cancer. Yet Solae stated that there is a "consensus among experts qualified by scientific training and experience" that "soy protein products reduce the risk of certain cancers." This is so shockingly untrue that I joined Sally Fallon and Bill Sanda of the Weston A. Price Foundation to file two protest documents with the FDA. The FDA has delayed its decision and we will meet with them this spring.
9. For those who currently include soy as a major protein in their diet, what foods would you suggest they use to replace the soy?
I strongly recommend a varied, omnivorous diet such as found in Nourishing Traditions and Eat Fat/Lose Fat by Sally Fallon and Mary Enig, and in Dr. Mercola's books and Web site. If people wish to remain vegetarians, I would recommend clean, raw, whole dairy products and eggs from free-range hens. Those who rely on nuts and beans for protein should be sure to soak them to deactivate phytates and other antinutrients and to make them more digestible an assimilable.
10. Do you have plans to write another book?
I am working on Whole Soy Stories, a sequel that will include true soy stories and the steps taken by men, women and children who have successfully recovered from the health problems caused by soy. I want to hear from the public and also from doctors and other health practitioners who are developing--or have developed--protocols for clients suffering from soy-induced thyroid disease, infertility, cognitive decline, cancer or other health problems. Please share your stories or purchase the book at http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225311.
Related Articles:
Soy Myth Exposed: Soy is Not a Health Food (http://en.groundspring.org
/EmailNow/pub.php?module=URLTracker&cmd=track&j=24953159&u=225312)
Why Soy Can Damage Your Health (http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225313)
Soy-Bean Crisis (http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225314)
Soy Formula May Stunt the Intestinal Growth in Your Baby (http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225315)
Soy Sales Slow for First Time Since 2001 (http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225316)
Soy: Is it Healthy or is it Harmful? (http://en.groundspring.org/EmailNow/pub.php?module=
URLTracker&cmd=track&j=24953159&u=225317)
Bill Sanda
Executive Director
Weston A. Price Foundation
westonaprice_bill@verizon.net
Newest Research On Why You Should Avoid Soy
by Sally Fallon & Mary G. Enig, Ph.D.
Cinderella's Dark Side
The propaganda that has created the soy sales miracle is all the more remarkable because, only a few decades ago, the soybean was considered unfit to eat - even in Asia. During the Chou Dynasty (1134-246 BC) the soybean was designated one of the five sacred grains, along with barley, wheat, millet and rice.
However, the pictograph for the soybean, which dates from earlier times, indicates that it was not first used as a food; for whereas the pictographs for the other four grains show the seed and stem structure of the plant, the pictograph for the soybean emphasizes the root structure. Agricultural literature of the period speaks frequently of the soybean and its use in crop rotation. Apparently the soy plant was initially used as a method of fixing nitrogen.13
The soybean did not serve as a food until the discovery of fermentation techniques, some time during the Chou Dynasty. The first soy foods were fermented products like tempeh, natto, miso and soy sauce.
At a later date, possibly in the 2nd century BC, Chinese scientists discovered that a purée of cooked soybeans could be precipitated with calcium sulfate or magnesium sulfate (plaster of Paris or Epsom salts) to make a smooth, pale curd - tofu or bean curd. The use of fermented and precipitated soy products soon spread to other parts of the Orient, notably Japan and Indonesia.
The Chinese did not eat unfermented soybeans as they did other legumes such as lentils because the soybean contains large quantities of natural toxins or "antinutrients". First among them are potent enzyme inhibitors that block the action of trypsin and other enzymes needed for protein digestion.
These inhibitors are large, tightly folded proteins that are not completely deactivated during ordinary cooking. They can produce serious gastric distress, reduced protein digestion and chronic deficiencies in amino acid uptake. In test animals, diets high in trypsin inhibitors cause enlargement and pathological conditions of the pancreas, including cancer.14
Soybeans also contain haemagglutinin, a clot-promoting substance that causes red blood cells to clump together.
Trypsin inhibitors and haemagglutinin are growth inhibitors. Weanling rats fed soy containing these antinutrients fail to grow normally. Growth-depressant compounds are deactivated during the process of fermentation, so once the Chinese discovered how to ferment the soybean, they began to incorporate soy foods into their diets.
In precipitated products, enzyme inhibitors concentrate in the soaking liquid rather than in the curd. Thus, in tofu and bean curd, growth depressants are reduced in quantity but not completely eliminated.
Soy also contains goitrogens - substances that depress thyroid function.
Additionally 99% a very large percentage of soy is genetically modified and it also has one of the highest percentages contamination by pesticides of any of our foods.
Soybeans are high in phytic acid, present in the bran or hulls of all seeds. It's a substance that can block the uptake of essential minerals - calcium, magnesium, copper, iron and especially zinc - in the intestinal tract.
Although not a household word, phytic acid has been extensively studied; there are literally hundreds of articles on the effects of phytic acid in the current scientific literature. Scientists are in general agreement that grain- and legume-based diets high in phytates contribute to widespread mineral deficiencies in third world countries.15
Analysis shows that calcium, magnesium, iron and zinc are present in the plant foods eaten in these areas, but the high phytate content of soy- and grain-based diets prevents their absorption.
The soybean has one of the highest phytate levels of any grain or legume that has been studied,16 and the phytates in soy are highly resistant to normal phytate-reducing techniques such as long, slow cooking.17 Only a long period of fermentation will significantly reduce the phytate content of soybeans.
When precipitated soy products like tofu are consumed with meat, the mineral-blocking effects of the phytates are reduced.18 The Japanese traditionally eat a small amount of tofu or miso as part of a mineral-rich fish broth, followed by a serving of meat or fish.
Vegetarians who consume tofu and bean curd as a substitute for meat and dairy products risk severe mineral deficiencies. The results of calcium, magnesium and iron deficiency are well known; those of zinc are less so.
Zinc is called the intelligence mineral because it is needed for optimal development and functioning of the brain and nervous system. It plays a role in protein synthesis and collagen formation; it is involved in the blood-sugar control mechanism and thus protects against diabetes; it is needed for a healthy reproductive system.
Zinc is a key component in numerous vital enzymes and plays a role in the immune system. Phytates found in soy products interfere with zinc absorption more completely than with other minerals.19 Zinc deficiency can cause a "spacey" feeling that some vegetarians may mistake for the "high" of spiritual enlightenment.
Milk drinking is given as the reason why second-generation Japanese in America grow taller than their native ancestors. Some investigators postulate that the reduced phytate content of the American diet - whatever may be its other deficiencies - is the true explanation, pointing out that both Asian and Western children who do not get enough meat and fish products to counteract the effects of a high phytate diet, frequently suffer rickets, stunting and other growth problems.20
Soy Protein Isolate: Not So Friendly
Soy processors have worked hard to get these antinutrients out of the finished product, particularly soy protein isolate (SPI) which is the key ingredient in most soy foods that imitate meat and dairy products, including baby formulas and some brands of soy milk.
SPI is not something you can make in your own kitchen. Production takes place in industrial factories where a slurry of soy beans is first mixed with an alkaline solution to remove fiber, then precipitated and separated using an acid wash and, finally, neutralized in an alkaline solution.
Acid washing in aluminum tanks leaches high levels of aluminum into the final product. The resultant curds are spray- dried at high temperatures to produce a high-protein powder. A final indignity to the original soybean is high-temperature, high-pressure extrusion processing of soy protein isolate to produce textured vegetable protein (TVP).
Much of the trypsin inhibitor content can be removed through high-temperature processing, but not all. Trypsin inhibitor content of soy protein isolate can vary as much as fivefold.21 (In rats, even low-level trypsin inhibitor SPI feeding results in reduced weight gain compared to controls.22)
But high-temperature processing has the unfortunate side-effect of so denaturing the other proteins in soy that they are rendered largely ineffective.23 That's why animals on soy feed need lysine supplements for normal growth.
Nitrites, which are potent carcinogens, are formed during spray-drying, and a toxin called lysinoalanine is formed during alkaline processing.24 Numerous artificial flavorings, particularly MSG, are added to soy protein isolate and textured vegetable protein products to mask their strong "beany" taste and to impart the flavor of meat.25
In feeding experiments, the use of SPI increased requirements for vitamins E, K, D and B12 and created deficiency symptoms of calcium, magnesium, manganese, molybdenum, copper, iron and zinc.26 Phytic acid remaining in these soy products greatly inhibits zinc and iron absorption; test animals fed SPI develop enlarged organs, particularly the pancreas and thyroid gland, and increased deposition of fatty acids in the liver.27
Yet soy protein isolate and textured vegetable protein are used extensively in school lunch programs, commercial baked goods, diet beverages and fast food products. They are heavily promoted in third world countries and form the basis of many food giveaway programs.
In spite of poor results in animal feeding trials, the soy industry has sponsored a number of studies designed to show that soy protein products can be used in human diets as a replacement for traditional foods.
An example is "Nutritional Quality of Soy Bean Protein Isolates: Studies in Children of Preschool Age", sponsored by the Ralston Purina Company.28 A group of Central American children suffering from malnutrition was first stabilized and brought into better health by feeding them native foods, including meat and dairy products. Then, for a two-week period, these traditional foods were replaced by a drink made of soy protein isolate and sugar.
All nitrogen taken in and all nitrogen excreted was measured in truly Orwellian fashion: the children were weighed naked every morning, and all excrement and vomit gathered up for analysis. The researchers found that the children retained nitrogen and that their growth was "adequate", so the experiment was declared a success.
Whether the children were actually healthy on such a diet, or could remain so over a long period, is another matter. The researchers noted that the children vomited "occasionally", usually after finishing a meal; that over half suffered from periods of moderate diarrhea; that some had upper respiratory infections; and that others suffered from rash and fever.
It should be noted that the researchers did not dare to use soy products to help the children recover from malnutrition, and were obliged to supplement the soy-sugar mixture with nutrients largely absent in soy products - notably, vitamins A, D and B12, iron, iodine and zinc.
Marketing The Perfect Food
"Just imagine you could grow the perfect food. This food not only would provide affordable nutrition, but also would be delicious and easy to prepare in a variety of ways. It would be a healthful food, with no saturated fat. In fact, you would be growing a virtual fountain of youth on your back forty."
The author is Dean Houghton, writing for The Furrow,2 a magazine published in 12 languages by John Deere. "This ideal food would help prevent, and perhaps reverse, some of the world's most dreaded diseases. You could grow this miracle crop in a variety of soils and climates. Its cultivation would build up, not deplete, the land...this miracle food already exists... It's called soy."
Just imagine. Farmers have been imagining - and planting more soy. What was once a minor crop, listed in the 1913 US Department of Agriculture (USDA) handbook not as a food but as an industrial product, now covers 72 million acres of American farmland. Much of this harvest will be used to feed chickens, turkeys, pigs, cows and salmon. Another large fraction will be squeezed to produce oil for margarine, shortenings and salad dressings.
Advances in technology make it possible to produce isolated soy protein from what was once considered a waste product - the defatted, high-protein soy chips - and then transform something that looks and smells terrible into products that can be consumed by human beings. Flavorings, preservatives, sweeteners, emulsifiers and synthetic nutrients have turned soy protein isolate, the food processors' ugly duckling, into a New Age Cinderella.
The new fairy-tale food has been marketed not so much for her beauty but for her virtues. Early on, products based on soy protein isolate were sold as extenders and meat substitutes - a strategy that failed to produce the requisite consumer demand. The industry changed its approach.
"The quickest way to gain product acceptability in the less affluent society," said an industry spokesman, "is to have the product consumed on its own merit in a more affluent society."3 So soy is now sold to the upscale consumer, not as a cheap, poverty food but as a miracle substance that will prevent heart disease and cancer, whisk away hot flushes, build strong bones and keep us forever young.
The competition - meat, milk, cheese, butter and eggs - has been duly demonised by the appropriate government bodies. Soy serves as meat and milk for a new generation of virtuous vegetarians.
Marketing Costs Money
This is especially when it needs to be bolstered with "research", but there's plenty of funds available. All soybean producers pay a mandatory assessment of one-half to one per cent of the net market price of soybeans. The total - something like US$80 million annually4 - supports United Soybean's program to "strengthen the position of soybeans in the marketplace and maintain and expand domestic and foreign markets for uses for soybeans and soybean products".
State soybean councils from Maryland, Nebraska, Delaware, Arkansas, Virginia, North Dakota and Michigan provide another $2.5 million for "research".5 Private companies like Archer Daniels Midland also contribute their share. ADM spent $4.7 million for advertising on Meet the Press and $4.3 million on Face the Nation during the course of a year.6
Public relations firms help convert research projects into newspaper articles and advertising copy, and law firms lobby for favorable government regulations. IMF money funds soy processing plants in foreign countries, and free trade policies keep soybean abundance flowing to overseas destinations.
The push for more soy has been relentless and global in its reach. Soy protein is now found in most supermarket breads. It is being used to transform "the humble tortilla, Mexico's corn-based staple food, into a protein-fortified 'super-tortilla' that would give a nutritional boost to the nearly 20 million Mexicans who live in extreme poverty".7 Advertising for a new soy-enriched loaf from Allied Bakeries in Britain targets menopausal women seeking relief from hot flushes. Sales are running at a quarter of a million loaves per week.8
The soy industry hired Norman Robert Associates, a public relations firm, to "get more soy products onto school menus".9 The USDA responded with a proposal to scrap the 30 per cent limit for soy in school lunches. The NuMenu program would allow unlimited use of soy in student meals. With soy added to hamburgers, tacos and lasagna, dieticians can get the total fat content below 30 per cent of calories, thereby conforming to government dictates. "With the soy-enhanced food items, students are receiving better servings of nutrients and less cholesterol and fat."
Soy milk has posted the biggest gains, soaring from $2 million in 1980 to $300 million in the US last year.10 Recent advances in processing have transformed the gray, thin, bitter, beany-tasting Asian beverage into a product that Western consumers will accept - one that tastes like a milkshake, but without the guilt.
Processing miracles, good packaging, massive advertising and a marketing strategy that stresses the products' possible health benefits account for increasing sales to all age groups. For example, reports that soy helps prevent prostate cancer have made soy milk acceptable to middle-aged men. "You don't have to twist the arm of a 55- to 60-year-old guy to get him to try soy milk," says Mark Messina. Michael Milken, former junk bond financier, has helped the industry shed its hippie image with well-publicized efforts to consume 40 grams of soy protein daily.
America today, tomorrow the world. Soy milk sales are rising in Canada, even though soy milk there costs twice as much as cow's milk. Soybean milk processing plants are sprouting up in places like Kenya.11 Even China, where soy really is a poverty food and whose people want more meat, not tofu, has opted to build Western-style soy factories rather than develop western grasslands for grazing animals.12
FDA Health Claim Challenged
On October 25, 1999 the US Food and Drug Administration (FDA) decided to allow a health claim for products "low in saturated fat and cholesterol" that contain 6.25 grams of soy protein per serving. Breakfast cereals, baked goods, convenience food, smoothie mixes and meat substitutes could now be sold with labels touting benefits to cardiovascular health, as long as these products contained one heaping teaspoon of soy protein per 100-gram serving.
The best marketing strategy for a product that is inherently unhealthy is, of course, a health claim.
"The road to FDA approval," writes a soy apologist, "was long and demanding, consisting of a detailed review of human clinical data collected from more than 40 scientific studies conducted over the last 20 years. Soy protein was found to be one of the rare foods that had sufficient scientific evidence not only to qualify for an FDA health claim proposal but to ultimately pass the rigorous approval process."29
The "long and demanding" road to FDA approval actually took a few unexpected turns. The original petition, submitted by Protein Technology International, requested a health claim for isoflavones, the estrogen-like compounds found plentifully in soybeans, based on assertions that "only soy protein that has been processed in a manner in which isoflavones are retained will result in cholesterol lowering".
In 1998, the FDA made the unprecedented move of rewriting PTI's petition, removing any reference to the phyto-estrogens and substituting a claim for soy protein - a move that was in direct contradiction to the agency's regulations. The FDA is authorized to make rulings only on substances presented by petition.
The abrupt change in direction was no doubt due to the fact that a number of researchers, including scientists employed by the US Government, submitted documents indicating that isoflavones are toxic.
The FDA had also received, early in 1998, the final British Government report on phytoestrogens, which failed to find much evidence of benefit and warned against potential adverse effects.30
Even with the change to soy protein isolate, FDA bureaucrats engaged in the "rigorous approval process" were forced to deal nimbly with concerns about mineral blocking effects, enzyme inhibitors, goitrogenicity, endocrine disruption, reproductive problems and increased allergic reactions from consumption of soy products.31
One of the strongest letters of protest came from Dr Dan Sheehan and Dr Daniel Doerge, government researchers at the National Center for Toxicological Research.32 Their pleas for warning labels were dismissed as unwarranted.
"Sufficient scientific evidence" of soy's cholesterol-lowering properties is drawn largely from a 1995 meta-analysis by Dr James Anderson, sponsored by Protein Technologies International and published in the New England Journal of Medicine.33
A meta-analysis is a review and summary of the results of many clinical studies on the same subject. Use of meta-analyses to draw general conclusions has come under sharp criticism by members of the scientific community.
"Researchers substituting meta-analysis for more rigorous trials risk making faulty assumptions and indulging in creative accounting," says Sir John Scott, President of the Royal Society of New Zealand. "Like is not being lumped with like. Little lumps and big lumps of data are being gathered together by various groups."34
There is the added temptation for researchers, particularly researchers funded by a company like Protein Technologies International, to leave out studies that would prevent the desired conclusions. Dr Anderson discarded eight studies for various reasons, leaving a remainder of twenty-nine.
The published report suggested that individuals with cholesterol levels over 250 mg/dl would experience a "significant" reduction of 7 to 20 per cent in levels of serum cholesterol if they substituted soy protein for animal protein. Cholesterol reduction was insignificant for individuals whose cholesterol was lower than 250 mg/dl.
In other words, for most of us, giving up steak and eating vegieburgers instead will not bring down blood cholesterol levels. The health claim that the FDA approved "after detailed review of human clinical data" fails to inform the consumer about these important details.
Research that ties soy to positive effects on cholesterol levels is "incredibly immature", said Ronald M. Krauss, MD, head of the Molecular Medical Research Program and Lawrence Berkeley National Laboratory.35 He might have added that studies in which cholesterol levels were lowered through either diet or drugs have consistently resulted in a greater number of deaths in the treatment groups than in controls - deaths from stroke, cancer, intestinal disorders, accident and suicide.36
Cholesterol-lowering measures in the US have fuelled a $60 billion per year cholesterol-lowering industry, but have not saved us from the ravages of heart disease.
Soy And Cancer
The new FDA ruling does not allow any claims about cancer prevention on food packages, but that has not restrained the industry and its marketers from making them in their promotional literature.
"In addition to protecting the heart," says a vitamin company brochure, "soy has demonstrated powerful anticancer benefits...the Japanese, who eat 30 times as much soy as North Americans, have a lower incidence of cancers of the breast, uterus and prostate."37
Indeed they do. But the Japanese, and Asians in general, have much higher rates of other types of cancer, particularly cancer of the esophagus, stomach, pancreas and liver.38 Asians throughout the world also have high rates of thyroid cancer.39 The logic that links low rates of reproductive cancers to soy consumption requires attribution of high rates of thyroid and digestive cancers to the same foods, particularly as soy causes these types of cancers in laboratory rats.
Just how much soy do Asians eat? A 1998 survey found that the average daily amount of soy protein consumed in Japan was about eight grams for men and seven for women - less than two teaspoons.40 The famous Cornell China Study, conducted by Colin T. Campbell, found that legume consumption in China varied from 0 to 58 grams per day, with a mean of about twelve.41
Assuming that two-thirds of legume consumption is soy, then the maximum consumption is about 40 grams, or less than three tablespoons per day, with an average consumption of about nine grams, or less than two teaspoons. A survey conducted in the 1930s found that soy foods accounted for only 1.5 per cent of calories in the Chinese diet, compared with 65 per cent of calories from pork.42 (Asians traditionally cooked with lard, not vegetable oil!)
Traditionally fermented soy products make a delicious, natural seasoning that may supply important nutritional factors in the Asian diet. But except in times of famine, Asians consume soy products only in small amounts, as condiments, and not as a replacement for animal foods - with one exception. Celibate monks living in monasteries and leading a vegetarian lifestyle find soy foods quite helpful because they dampen libido.
It was a 1994 meta-analysis by Mark Messina, published in Nutrition and Cancer, that fuelled speculation on soy's anticarcinogenic properties.43 Messina noted that in 26 animal studies, 65 per cent reported protective effects from soy. He conveniently neglected to include at least one study in which soy feeding caused pancreatic cancer - the 1985 study by Rackis.44 In the human studies he listed, the results were mixed.
A few showed some protective effect, but most showed no correlation at all between soy consumption and cancer rates. He concluded that "the data in this review cannot be used as a basis for claiming that soy intake decreases cancer risk". Yet in his subsequent book, The Simple Soybean and Your Health, Messina makes just such a claim, recommending one cup or 230 grams of soy products per day in his "optimal" diet as a way to prevent cancer.
Thousands of women are now consuming soy in the belief that it protects them against breast cancer. Yet, in 1996, researchers found that women consuming soy protein isolate had an increased incidence of epithelial hyperplasia, a condition that presages malignancies.45 A year later, dietary genistein was found to stimulate breast cells to enter the cell cycle - a discovery that led the study authors to conclude that women should not consume soy products to prevent breast cancer.46
Phytoestrogens: Panacea Or Poison?
The male species of tropical birds carries the drab plumage of the female at birth and 'colors up' at maturity, somewhere between nine and 24 months.
In 1991, Richard and Valerie James, bird breeders in Whangerai, New Zealand, purchased a new kind of feed for their birds - one based largely on soy protein.47 When soy-based feed was used, their birds 'colored up' after just a few months. In fact, one bird-food manufacturer claimed that this early development was an advantage imparted by the feed.
A 1992 ad for Roudybush feed formula showed a picture of the male crimson rosella, an Australian parrot that acquires beautiful red plumage at 18 to 24 months, already brightly colored at 11 weeks old.
Unfortunately, in the ensuing years, there was decreased fertility in the birds, with precocious maturation, deformed, stunted and stillborn babies, and premature deaths, especially among females, with the result that the total population in the aviaries went into steady decline.
The birds suffered beak and bone deformities, goiter, immune system disorders and pathological, aggressive behavior. Autopsy revealed digestive organs in a state of disintegration. The list of problems corresponded with many of the problems the Jameses had encountered in their two children, who had been fed soy-based infant formula.
Startled, aghast, angry, the Jameses hired toxicologist Mike Fitzpatrick. PhD, to investigate further. Dr Fitzpatrick's literature review uncovered evidence that soy consumption has been linked to numerous disorders, including infertility, increased cancer and infantile leukemia; and, in studies dating back to the 1950s,48 that genistein in soy causes endocrine disruption in animals.
Dr Fitzpatrick also analyzed the bird feed and found that it contained high levels of phytoestrogens, especially genistein. When the Jameses discontinued using soy-based feed, the flock gradually returned to normal breeding habits and behavior.
The Jameses embarked on a private crusade to warn the public and government officials about toxins in soy foods, particularly the endocrine-disrupting isoflavones, genistein and diadzen. Protein Technology International received their material in 1994.
In 1991, Japanese researchers reported that consumption of as little as 30 grams or two tablespoons of soybeans per day for only one month resulted in a significant increase in thyroid-stimulating hormone.49 Diffuse goiter and hypothyroidism appeared in some of the subjects and many complained of constipation, fatigue and lethargy, even though their intake of iodine was adequate.
In 1997, researchers from the FDA's National Center for Toxicological Research made the embarrassing discovery that the goitrogenic components of soy were the very same isoflavones.50
Twenty-five grams of soy protein isolate, the minimum amount PTI claimed to have cholesterol-lowering effects, contains from 50 to 70 mg of isoflavones. It took only 45 mg of isoflavones in premenopausal women to exert significant biological effects, including a reduction in hormones needed for adequate thyroid function. These effects lingered for three months after soy consumption was discontinued.51
One hundred grams of soy protein - the maximum suggested cholesterol-lowering dose, and the amount recommended by Protein Technologies International - can contain almost 600 mg of isoflavones,52 an amount that is undeniably toxic. In 1992, the Swiss health service estimated that 100 grams of soy protein provided the estrogenic equivalent of the Pill.53
In vitro studies suggest that isoflavones inhibit synthesis of estradiol and other steroid hormones.54 Reproductive problems, infertility, thyroid disease and liver disease due to dietary intake of isoflavones have been observed for several species of animals including mice, cheetah, quail, pigs, rats, sturgeon and sheep.55
It is the isoflavones in soy that are said to have a favorable effect on postmenopausal symptoms, including hot flushes, and protection from osteoporosis. Quantification of discomfort from hot flushes is extremely subjective, and most studies show that control subjects report reduction in discomfort in amounts equal to subjects given soy.56 The claim that soy prevents osteoporosis is extraordinary, given that soy foods block calcium and cause vitamin D deficiencies.
If Asians indeed have lower rates of osteoporosis than Westerners, it is because their diet provides plenty of vitamin D from shrimp, lard and seafood, and plenty of calcium from bone broths. The reason that Westerners have such high rates of osteoporosis is because they have substituted soy oil for butter, which is a traditional source of vitamin D and other fat-soluble activators needed for calcium absorption.
Birth Control Pills For Babies
But it was the isoflavones in infant formula that gave the Jameses the most cause for concern. In 1998, investigators reported that the daily exposure of infants to isoflavones in soy infant formula is 6 to11 times higher on a body-weight basis than the dose that has hormonal effects in adults consuming soy foods. Circulating concentrations of isoflavones in infants fed soy-based formula were 13,000 to 22,000 times higher than plasma estradiol concentrations in infants on cow's milk formula.57
Approximately 25 per cent of bottle-fed children in the US receive soy-based formula - a much higher percentage than in other parts of the Western world. Fitzpatrick estimated that an infant exclusively fed soy formula receives the estrogenic equivalent (based on body weight) of at least five birth control pills per day.58 By contrast, almost no phytoestrogens have been detected in dairy-based infant formula or in human milk, even when the mother consumes soy products.
Scientists have known for years that soy-based formula can cause thyroid problems in babies. But what are the effects of soy products on the hormonal development of the infant, both male and female?
Male infants undergo a "testosterone surge" during the first few months of life, when testosterone levels may be as high as those of an adult male. During this period, the infant is programmed to express male characteristics after puberty, not only in the development of his sexual organs and other masculine physical traits, but also in setting patterns in the brain characteristic of male behavior.
In monkeys, deficiency of male hormones impairs the development of spatial perception (which, in humans, is normally more acute in men than in women), of learning ability and of visual discrimination tasks (such as would be required for reading).59 It goes without saying that future patterns of sexual orientation may also be influenced by the early hormonal environment.
Male children exposed during gestation to diethylstilbestrol (DES), a synthetic estrogen that has effects on animals similar to those of phytoestrogens from soy, had testes smaller than normal on manturation.60
Learning disabilities, especially in male children, have reached epidemic proportions. Soy infant feeding - which began in earnest in the early 1970s - cannot be ignored as a probable cause for these tragic developments.
As for girls, an alarming number are entering puberty much earlier than normal, according to a recent study reported in the journal Pediatrics.61 Investigators found that one per cent of all girls now show signs of puberty, such as breast development or pubic hair, before the age of three; by age eight, 14.7 per cent of white girls and almost 50 per cent of African-American girls have one or both of these characteristics.
New data indicate that environmental estrogens such as PCBs and DDE (a breakdown product of DDT) may cause early sexual development in girls.62 In the 1986 Puerto Rico Premature Thelarche study, the most significant dietary association with premature sexual development was not chicken - as reported in the press - but soy infant formula.63
The consequences of this truncated childhood are tragic. Young girls with mature bodies must cope with feelings and urges that most children are not well-equipped to handle. And early maturation in girls is frequently a harbinger for problems with the reproductive system later in life, including failure to menstruate, infertility and breast cancer.
Parents who have contacted the Jameses recount other problems associated with children of both sexes who were fed soy-based formula, including extreme emotional behavior, asthma, immune system problems, pituitary insufficiency, thyroid disorders and irritable bowel syndrome - the same endocrine and digestive havoc that afflicted the Jameses' parrots.
Dissension In The Ranks
Organizers of the Third International Soy Symposium would be hard-pressed to call the conference an unqualified success. On the second day of the symposium, the London-based Food Commission and the Weston A. Price Foundation of Washington, DC, held a joint press conference, in the same hotel as the symposium, to present concerns about soy infant formula.
Industry representatives sat stony-faced through the recitation of potential dangers and a plea from concerned scientists and parents to pull soy-based infant formula from the market. Under pressure from the Jameses, the New Zealand Government had issued a health warning about soy infant formula in 1998; it was time for the American government to do the same.
On the last day of the symposium, presentations on new findings related to toxicity sent a well-oxygenated chill through the giddy helium hype. Dr Lon White reported on a study of Japanese Americans living in Hawaii, that showed a significant statistical relationship between two or more servings of tofu a week and "accelerated brain aging".64
Those participants who consumed tofu in mid-life had lower cognitive function in late life and a greater incidence of Alzheimer's disease and dementia. "What's more," said Dr White, "those who ate a lot of tofu, by the time they were 75 or 80 looked five years older".65 White and his colleagues blamed the negative effects on isoflavones - a finding that supports an earlier study in which postmenopausal women with higher levels of circulating estrogen experienced greater cognitive decline.66
Scientists Daniel Sheehan and Daniel Doerge, from the National Center for Toxicological Research, ruined PTI's day by presenting findings from rat feeding studies, indicating that genistein in soy foods causes irreversible damage to enzymes that synthesise thyroid hormones.67
"The association between soybean consumption and goiter in animals and humans has a long history," wrote Dr Doerge. "Current evidence for the beneficial effects of soy requires a full understanding of potential adverse effects as well."
Dr Claude Hughes reported that rats born to mothers that were fed genistein had decreased birth weights compared to controls, and onset of puberty occurred earlier in male offspring.68 His research suggested that the effects observed in rats "...will be at least somewhat predictive of what occurs in humans.
Question Marks Over GRAS Status
Lurking in the background of industry hype for soy is the nagging question of whether it's even legal to add soy protein isolate to food. All food additives not in common use prior to 1958, including casein protein from milk, must have GRAS (Generally Recognized As Safe) status. In 1972, the Nixon administration directed a re-examination of substances believed to be GRAS, in the light of any scientific information then available.
This re-examination included casein protein that became codified as GRAS in 1978. In 1974, the FDA obtained a literature review of soy protein because, as soy protein had not been used in food until 1959 and was not even in common use in the early 1970s, it was not eligible to have its GRAS status grandfathered under the provisions of the Food, Drug and Cosmetic Act.71
The scientific literature up to 1974 recognized many antinutrients in factory-made soy protein, including trypsin inhibitors, phytic acid and genistein. But the FDA literature review dismissed discussion of adverse impacts, with the statement that it was important for "adequate processing" to remove them.
Genistein could be removed with an alcohol wash, but it was an expensive procedure that processors avoided. Later studies determined that trypsin inhibitor content could be removed only with long periods of heat and pressure, but the FDA has imposed no requirements for manufacturers to do so.
The FDA was more concerned with toxins formed during processing, specifically nitrites and lysinoalanine.72 Even at low levels of consumption - averaging one-third of a gram per day at the time - the presence of these carcinogens was considered too great a threat to public health to allow GRAS status.
Soy protein did have approval for use as a binder in cardboard boxes, and this approval was allowed to continue, as researchers considered that migration of nitrites from the box into the food contents would be too small to constitute a cancer risk. FDA officials called for safety specifications and monitoring procedures before granting of GRAS status for food.
These were never performed. To this day, use of soy protein is codified as GRAS only for this limited industrial use as a cardboard binder. This means that soy protein must be subject to premarket approval procedures each time manufacturers intend to use it as a food or add it to a food.
Soy protein was introduced into infant formula in the early 1960s. It was a new product with no history of any use at all. As soy protein did not have GRAS status, premarket approval was required. This was not and still has not been granted. The key ingredient of soy infant formula is not recognized as safe.
The Next Asbestos?
"Against the backdrop of widespread praise...there is growing suspicion that soy - despite its undisputed benefits - may pose some health hazards," writes Marian Burros, a leading food writer for the New York Times. More than any other writer, Ms Burros's endorsement of a low-fat, largely vegetarian diet has herded Americans into supermarket aisles featuring soy foods.
Yet her January 26, 2000 article, "Doubts Cloud Rosy News on Soy", contains the following alarming statement: "Not one of the 18 scientists interviewed for this column was willing to say that taking isoflavones was risk free." Ms Burros did not enumerate the risks, nor did she mention that the recommended 25 daily grams of soy protein contain enough isoflavones to cause problems in sensitive individuals, but it was evident that the industry had recognized the need to cover itself.
Because the industry is extremely exposed...contingency lawyers will soon discover that the number of potential plaintiffs can be counted in the millions and the pockets are very, very deep. Juries will hear something like the following: "The industry has known for years that soy contains many toxins.
At first they told the public that the toxins were removed by processing. When it became apparent that processing could not get rid of them, they claimed that these substances were beneficial. Your government granted a health claim to a substance that is poisonous, and the industry lied to the public to sell more soy."
The "industry" includes merchants, manufacturers, scientists, publicists, bureaucrats, former bond financiers, food writers, vitamin companies and retail stores. Farmers will probably escape because they were duped like the rest of us. But they need to find something else to grow before the soy bubble bursts and the market collapses: grass-fed livestock, designer vegetables...or hemp to make paper for thousands and thousands of legal briefs.
Extracted from Nexus Magazine, Volume 7, Number 3 (April-May 2000)
About the Authors:
Sally Fallon is the author of Nourishing Traditions: The Cookbook that Challenges Politically Correct Nutrition and the Diet Dictocrats (1999, 2nd edition, New Trends Publishing, tel +1 877 707 1776 or +1 219 268 2601) and President of the Weston A. Price Foundation, Washington, DC (www.WestonAPrice.org)
Mary G. Enig, Ph.D., a nutritionist widely known for her research on the nutritional aspects of fats and oils, is a consultant, clinician, and the Director of the Nutritional Sciences Division of Enig Associates, Inc., Silver Spring, Maryland.
She received her PhD in Nutritional Sciences from the University of Maryland, College Park in 1984, taught a graduate course in nutrient-drug interactions for the University's Graduate Program in Nutritional Sciences, and held a Faculty Research Associateship from 1984 through 1991 with the Lipids Research Group in the Department of Chemistry and Biochemistry.
Dr. Enig is a Fellow of the American College of Nutrition, and a member of the American Institute of Nutrition. Her many years of experience as a "bench chemist" in the analysis of food fats and oils, provides a foundation for her active roles in food labeling and composition issues at the federal and state levels.
Dr. Enig is a Consulting Editor to the "Journal of the American College of Nutrition" and formerly served as a Contributing Editor to "Clinical Nutrition." She has published 14 scientific papers on the subject of food fats and oils, several chapters on nutrition for books, and presented over 35 scientific papers on food and nutrition topics.
She is the President of the Maryland Nutritionists Association, past President of the Coalition of Nutritionists of Maryland and was appointed by the Governor in 1986 to the Maryland State Advisory Council on Nutrition and served as the Chairman of the Health Subcommittee until the Council was disbanded in 1988.
COMMENT:
Sally Fallon and Dr. Enig are to be highly commended for this much needed soy update. Together they have compiled the most definitive document to date on why one should avoid soy. This is a MAJOR work and I am hoping to promote it for the national media attention that it deserves.
Another article on How Much Soy Asians Actually Eat
ENDNOTES:
1. Program for the Third International Symposium on the Role of Soy in Preventing and Treating Chronic Disease, Sunday, October 31, through Wednesday, November 3, 1999, Omni Shoreham Hotel, Washington, DC.
2. Houghton, Dean, "Healthful Harvest", The Furrow, January 2000, pp. 10-13.
3. Coleman, Richard J., "Vegetable Protein - A Delayed Birth?" Journal of the American Oil Chemists' Society 52:238A, April 1975.
4. See www/unitedsoybean.org.
5. These are listed in www.soyonlineservice.co.nz.
6. Wall Street Journal, October 27, 1995.
7. Smith, James F., "Healthier tortillas could lead to healthier Mexico", Denver Post, August 22, 1999, p. 26A.
8. "Bakery says new loaf can help reduce hot flushes", Reuters, September 15, 1997.
9. "Beefing Up Burgers with Soy Products at School", Nutrition Week, Community Nutrition Institute, Washington, DC, June 5, 1998, p. 2.
10. Urquhart, John, "A Health Food Hits Big Time", Wall Street Journal, August 3, 1999, p. B1
11. "Soyabean Milk Plant in Kenya", Africa News Service, September 1998.
12. Simoons, Frederick J., Food in China: A Cultural and Historical Inquiry, CRC Press, Boca Raton, 1991, p. 64.
13. Katz, Solomon H., "Food and Biocultural Evolution: A Model for the Investigation of Modern Nutritional Problems", Nutritional Anthropology, Alan R. Liss Inc., 1987, p. 50.
14. Rackis, Joseph J. et al., "The USDA trypsin inhibitor study. I. Background, objectives and procedural details", Qualification of Plant Foods in Human Nutrition, vol. 35, 1985.
15. Van Rensburg et al., "Nutritional status of African populations predisposed to esophageal cancer", Nutrition and Cancer, vol. 4, 1983, pp. 206-216; Moser, P.B. et al., "Copper, iron, zinc and selenium dietary intake and status of Nepalese lactating women and their breastfed infants", American Journal of Clinical Nutrition 47:729-734, April 1988; Harland, B.F. et al., "Nutritional status and phytate: zinc and phytate X calcium: zinc dietary molar ratios of lacto-ovovegetarian Trappist monks: 10 years later", Journal of the American Dietetic Association 88:1562-1566, December 1988.
16. El Tiney, A.H., "Proximate Composition and Mineral and Phytate Contents of Legumes Grown in Sudan", Journal of Food Composition and Analysis (1989) 2:6778.
17. Ologhobo, A.D. et al., "Distribution of phosphorus and phytate in some Nigerian varieties of legumes and some effects of processing", Journal of Food Science 49(1):199-201, January/February 1984.
18. Sandstrom, B. et al., "Effect of protein level and protein source on zinc absorption in humans", Journal of Nutrition 119(1):48-53, January 1989; Tait, Susan et al., "The availability of minerals in food, with particular reference to iron", Journal of Research in Society and Health 103(2):74-77, April 1983.
19. Phytate reduction of zinc absorption has been demonstrated in numerous studies. These results are summarised in Leviton, Richard, Tofu, Tempeh, Miso and Other Soyfoods: The 'Food of the Future' - How to Enjoy Its Spectacular Health Benefits, Keats Publishing, Inc., New Canaan, CT, USA, 1982, p. 1415.
20. Mellanby, Edward, "Experimental rickets: The effect of cereals and their interaction with other factors of diet and environment in producing rickets", Journal of the Medical Research Council 93:265, March 1925; Wills, M.R. et al., "Phytic Acid and Nutritional Rickets in Immigrants", The Lancet, April 8,1972, pp. 771-773.
21. Rackis et al., ibid.
22. Rackis et al., ibid., p. 232.
23. Wallace, G.M., "Studies on the Processing and Properties of Soymilk", Journal of Science and Food Agriculture 22:526-535, October 1971.
24. Rackis, et al., ibid., p. 22; "Evaluation of the Health Aspects of Soy Protein Isolates as Food Ingredients", prepared for FDA by Life Sciences Research Office, Federation of American Societies for Experimental Biology (9650 Rockville Pike, Bethesda, MD 20014), USA, Contract No. FDA 223-75-2004, 1979.
25. See www/truthinlabeling.org.
26. Rackis, Joseph, J., "Biological and Physiological Factors in Soybeans", Journal of the American Oil Chemists' Society 51:161A-170A, January 1974.
27. Rackis, Joseph J. et al., "The USDA trypsin inhibitor study", ibid.
28. Torum, Benjamin, "Nutritional Quality of Soybean Protein Isolates: Studies in Children of Preschool Age", in Soy Protein and Human Nutrition, Harold L Wilcke et al. (eds), Academic Press, New York, 1979.
29. Zreik, Marwin, CCN, "The Great Soy Protein Awakening", Total Health 32(1), February 2000.
30. IEH Assessment on Phytoestrogens in the Human Diet, Final Report to the Ministry of Agriculture, Fisheries and Food, UK, November 1997, p. 11.
31. Food Labeling: Health Claims: Soy Protein and Coronary Heart Disease, Food and Drug Administration 21 CFR, Part 101 (Docket No. 98P-0683).
32. Sheegan, Daniel M. and Daniel R Doerge, Letter to Dockets Management Branch (HFA-305), February 18, 1999.
33. Anderson, James W. et al., "Meta-analysis of the Effects of Soy Protein Intake on Serum Lipids", New England Journal of Medicine (1995) 333:(5):276-282.
34. Guy, Camille, "Doctors warned against magic, quackery", New Zealand Herald, September 9, 1995, section 8, p. 5.
35. Sander, Kate and Hilary Wilson, "FDA approves new health claim for soy, but litte fallout expected for dairy", Cheese Market News, October 22, 1999, p. 24.
36. Enig, Mary G. and Sally Fallon, "The Oiling of America", NEXUS Magazine, December 1998-January 1999 and February-March 1999; also available at www.WestonAPrice.org.
37. Natural Medicine News (L & H Vitamins, 32-33 47th Avenue, Long Island City, NY 11101), USA, January/February 2000, p. 8.
38. Harras, Angela (ed.), Cancer Rates and Risks, National Institutes of Health, National Cancer Institute, 1996, 4th edition.
39. Searle, Charles E. (ed.), Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, 1976.
40. Nagata, C. et al., Journal of Nutrition (1998) 128:209-213.
41. Campbell, Colin T. et al., The Cornell Project in China.
42. Chang, K.C. (ed.), Food in Chinese Culture: Anthropological and Historical Perspectives, New Haven, 1977.
43. Messina, Mark J. et al., "Soy Intake and Cancer Risk: A Review of the In Vitro and In Vivo Data", Nutrition and Cancer (1994) 21(2):113-131.
44. Rackis et al, "The USDA trypsin inhibitor study", ibid.
45. Petrakis, N.L. et al., "Stimulatory influence of soy protein isolate on breast secretion in pre- and post-menopausal women", Cancer Epid. Bio. Prev. (1996) 5:785-794.
46. Dees, C. et al., "Dietary estrogens stimulate human breast cells to enter the cell cycle", Environmental Health Perspectives (1997) 105(Suppl. 3):633-636.
47. Woodhams, D.J., "Phytoestrogens and parrots: The anatomy of an investigation", Proceedings of the Nutrition Society of New Zealand (1995) 20:22-30.
48. Matrone, G. et al., "Effect of Genistin on Growth and Development of the Male Mouse", Journal of Nutrition (1956) 235-240.
49. Ishizuki, Y. et al., "The effects on the thyroid gland of soybeans administered experimentally in healthy subjects", Nippon Naibunpi Gakkai Zasshi (1991) 767:622-629.
50. Divi, R.L. et al., "Anti-thyroid isoflavones from the soybean", Biochemical Pharmacology (1997) 54:1087-1096.
51. Cassidy, A. et al., "Biological Effects of a Diet of Soy Protein Rich in Isoflavones on the Menstrual Cycle of Premenopausal Women", American Journal of Clinical Nutrition (1994) 60:333-340.
52. Murphy, P.A., "Phytoestrogen Content of Processed Soybean Foods", Food Technology, January 1982, pp. 60-64.
53. Bulletin de L'Office Fédéral de la Santé Publique, no. 28, July 20, 1992.
54. Keung, W.M., "Dietary oestrogenic isoflavones are potent inhibitors of B-hydroxysteroid dehydrogenase of P. testosteronii", Biochemical and Biophysical Research Committee (1995) 215:1137-1144; Makela, S.I. et al., "Estrogen-specific 12 B-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens", PSEBM (1995) 208:51-59.
55. Setchell, K.D.R. et al., "Dietary oestrogens - a probable cause of infertility and liver disease in captive cheetahs", Gastroenterology (1987) 93:225-233; Leopald, A.S., "Phytoestrogens: Adverse effects on reproduction in California Quail," Science (1976) 191:98-100; Drane, H.M. et al., "Oestrogenic activity of soya-bean products", Food, Cosmetics and Technology (1980) 18:425-427; Kimura, S. et al., "Development of malignant goiter by defatted soybean with iodine-free diet in rats", Gann. (1976) 67:763-765; Pelissero, C. et al., "Oestrogenic effect of dietary soybean meal on vitellogenesis in cultured Siberian Sturgeon Acipenser baeri", Gen. Comp. End. (1991) 83:447-457; Braden et al., "The oestrogenic activity and metabolism of certain isoflavones in sheep", Australian J. Agricultural Research (1967) 18:335-348.
56. Ginsburg, Jean and Giordana M. Prelevic, "Is there a proven place for phytoestrogens in the menopause?", Climacteric (1999) 2:75-78.
57. Setchell, K.D. et al., "Isoflavone content of infant formulas and the metabolic fate of these early phytoestrogens in early life", American Journal of Clinical Nutrition, December 1998 Supplement, 1453S-1461S.
58. Irvine, C. et al., "The Potential Adverse Effects of Soybean Phytoestrogens in Infant Feeding", New Zealand Medical Journal May 24, 1995, p. 318.
59. Hagger, C. and J. Bachevalier, "Visual habit formation in 3-month-old monkeys (Macaca mulatta): reversal of sex difference following neonatal manipulations of androgen", Behavior and Brain Research (1991) 45:57-63.
60. Ross, R.K. et al., "Effect of in-utero exposure to diethylstilbestrol on age at onset of puberty and on post-pubertal hormone levels in boys", Canadian Medical Association Journal 128(10):1197-8, May 15, 1983.
61. Herman-Giddens, Marcia E. et al., "Secondary Sexual Characteristics and Menses in Young Girls Seen in Office Practice: A Study from the Pediatric Research in Office Settings Network", Pediatrics 99(4):505-512, April 1997.
62. Rachel's Environment & Health Weekly 263, "The Wingspread Statement", Part 1, December 11, 1991; Colborn, Theo, Dianne Dumanoski and John Peterson Myers, Our Stolen Future, Little, Brown & Company, London, 1996.
63. Freni-Titulaer, L.W., "Premature Thelarch in Puerto Rico: A search for environmental factors", American Journal of Diseases of Children 140(12):1263-1267, December 1986.
64. White, Lon, "Association of High Midlife Tofu Consumption with Accelerated Brain Aging", Plenary Session #8: Cognitive Function, The Third International Soy Symposium, November 1999, Program, p. 26.
65. Altonn, Helen, "Too much tofu induces 'brain aging', study shows", Honolulu Star-Bulletin, November 19, 1999.
66. Journal of the American Geriatric Society (1998) 46:816-21.
67. Doerge, Daniel R., "Inactivation of Thyroid Peroxidase by Genistein and Daidzein in Vitro and in Vivo; Mechanism for Anti-Thyroid Activity of Soy", presented at the November 1999 Soy Symposium in Washington, DC, National Center for Toxicological Research, Jefferson, AR 72029, USA.
68. Hughes, Claude, Center for Women's Health and Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA.
69. Soy Intake May Affect Fetus", Reuters News Service, November 5, 1999.
70. "Vegetarian diet in pregnancy linked to birth defect", BJU International 85:107-113, January 2000.
71. FDA ref 72/104, Report FDABF GRAS - 258.
72. "Evaluation of the Health Aspects of Soy Protein Isolates as Food Ingredients", prepared for FDA by Life Sciences Research Office, Federation of American Societies for Experimental Biology (FASEB) (9650 Rockville Pike, Bethesda, MD 20014, USA), Contract No, FDA 223-75-2004, 1979.
There is no reason to assume that there will be gross malformations of fetuses but there may be subtle changes, such as neurobehavioral attributes, immune function and sex hormone levels." The results, he said, "could be nothing or could be something of great concern...if mom is eating something that can act like sex hormones, it is logical to wonder if that could change the baby's development".69
A study of babies born to vegetarian mothers, published in January 2000, indicated just what those changes in baby's development might be. Mothers who ate a vegetarian diet during pregnancy had a fivefold greater risk of delivering a boy with hypospadias, a birth defect of the penis.70 The authors of the study suggested that the cause was greater exposure to phytoestrogens in soy foods popular with vegetarians.
Problems with female offspring of vegetarian mothers are more likely to show up later in life. While soy's estrogenic effect is less than that of diethylstilbestrol (DES), the dose is likely to be higher because it's consumed as a food, not taken as a drug. Daughters of women who took DES during pregnancy suffered from infertility and cancer when they reached their twenties.
Newest Research On Why You Should Avoid Soy
by Sally Fallon & Mary G. Enig, Ph.D.
Cinderella's Dark Side
The propaganda that has created the soy sales miracle is all the more remarkable because, only a few decades ago, the soybean was considered unfit to eat - even in Asia. During the Chou Dynasty (1134-246 BC) the soybean was designated one of the five sacred grains, along with barley, wheat, millet and rice.
However, the pictograph for the soybean, which dates from earlier times, indicates that it was not first used as a food; for whereas the pictographs for the other four grains show the seed and stem structure of the plant, the pictograph for the soybean emphasizes the root structure. Agricultural literature of the period speaks frequently of the soybean and its use in crop rotation. Apparently the soy plant was initially used as a method of fixing nitrogen.13
The soybean did not serve as a food until the discovery of fermentation techniques, some time during the Chou Dynasty. The first soy foods were fermented products like tempeh, natto, miso and soy sauce.
At a later date, possibly in the 2nd century BC, Chinese scientists discovered that a purée of cooked soybeans could be precipitated with calcium sulfate or magnesium sulfate (plaster of Paris or Epsom salts) to make a smooth, pale curd - tofu or bean curd. The use of fermented and precipitated soy products soon spread to other parts of the Orient, notably Japan and Indonesia.
The Chinese did not eat unfermented soybeans as they did other legumes such as lentils because the soybean contains large quantities of natural toxins or "antinutrients". First among them are potent enzyme inhibitors that block the action of trypsin and other enzymes needed for protein digestion.
These inhibitors are large, tightly folded proteins that are not completely deactivated during ordinary cooking. They can produce serious gastric distress, reduced protein digestion and chronic deficiencies in amino acid uptake. In test animals, diets high in trypsin inhibitors cause enlargement and pathological conditions of the pancreas, including cancer.14
Soybeans also contain haemagglutinin, a clot-promoting substance that causes red blood cells to clump together.
Trypsin inhibitors and haemagglutinin are growth inhibitors. Weanling rats fed soy containing these antinutrients fail to grow normally. Growth-depressant compounds are deactivated during the process of fermentation, so once the Chinese discovered how to ferment the soybean, they began to incorporate soy foods into their diets.
In precipitated products, enzyme inhibitors concentrate in the soaking liquid rather than in the curd. Thus, in tofu and bean curd, growth depressants are reduced in quantity but not completely eliminated.
Soy also contains goitrogens - substances that depress thyroid function.
Additionally 99% a very large percentage of soy is genetically modified and it also has one of the highest percentages contamination by pesticides of any of our foods.
Soybeans are high in phytic acid, present in the bran or hulls of all seeds. It's a substance that can block the uptake of essential minerals - calcium, magnesium, copper, iron and especially zinc - in the intestinal tract.
Although not a household word, phytic acid has been extensively studied; there are literally hundreds of articles on the effects of phytic acid in the current scientific literature. Scientists are in general agreement that grain- and legume-based diets high in phytates contribute to widespread mineral deficiencies in third world countries.15
Analysis shows that calcium, magnesium, iron and zinc are present in the plant foods eaten in these areas, but the high phytate content of soy- and grain-based diets prevents their absorption.
The soybean has one of the highest phytate levels of any grain or legume that has been studied,16 and the phytates in soy are highly resistant to normal phytate-reducing techniques such as long, slow cooking.17 Only a long period of fermentation will significantly reduce the phytate content of soybeans.
When precipitated soy products like tofu are consumed with meat, the mineral-blocking effects of the phytates are reduced.18 The Japanese traditionally eat a small amount of tofu or miso as part of a mineral-rich fish broth, followed by a serving of meat or fish.
Vegetarians who consume tofu and bean curd as a substitute for meat and dairy products risk severe mineral deficiencies. The results of calcium, magnesium and iron deficiency are well known; those of zinc are less so.
Zinc is called the intelligence mineral because it is needed for optimal development and functioning of the brain and nervous system. It plays a role in protein synthesis and collagen formation; it is involved in the blood-sugar control mechanism and thus protects against diabetes; it is needed for a healthy reproductive system.
Zinc is a key component in numerous vital enzymes and plays a role in the immune system. Phytates found in soy products interfere with zinc absorption more completely than with other minerals.19 Zinc deficiency can cause a "spacey" feeling that some vegetarians may mistake for the "high" of spiritual enlightenment.
Milk drinking is given as the reason why second-generation Japanese in America grow taller than their native ancestors. Some investigators postulate that the reduced phytate content of the American diet - whatever may be its other deficiencies - is the true explanation, pointing out that both Asian and Western children who do not get enough meat and fish products to counteract the effects of a high phytate diet, frequently suffer rickets, stunting and other growth problems.20
Soy Protein Isolate: Not So Friendly
Soy processors have worked hard to get these antinutrients out of the finished product, particularly soy protein isolate (SPI) which is the key ingredient in most soy foods that imitate meat and dairy products, including baby formulas and some brands of soy milk.
SPI is not something you can make in your own kitchen. Production takes place in industrial factories where a slurry of soy beans is first mixed with an alkaline solution to remove fiber, then precipitated and separated using an acid wash and, finally, neutralized in an alkaline solution.
Acid washing in aluminum tanks leaches high levels of aluminum into the final product. The resultant curds are spray- dried at high temperatures to produce a high-protein powder. A final indignity to the original soybean is high-temperature, high-pressure extrusion processing of soy protein isolate to produce textured vegetable protein (TVP).
Much of the trypsin inhibitor content can be removed through high-temperature processing, but not all. Trypsin inhibitor content of soy protein isolate can vary as much as fivefold.21 (In rats, even low-level trypsin inhibitor SPI feeding results in reduced weight gain compared to controls.22)
But high-temperature processing has the unfortunate side-effect of so denaturing the other proteins in soy that they are rendered largely ineffective.23 That's why animals on soy feed need lysine supplements for normal growth.
Nitrites, which are potent carcinogens, are formed during spray-drying, and a toxin called lysinoalanine is formed during alkaline processing.24 Numerous artificial flavorings, particularly MSG, are added to soy protein isolate and textured vegetable protein products to mask their strong "beany" taste and to impart the flavor of meat.25
In feeding experiments, the use of SPI increased requirements for vitamins E, K, D and B12 and created deficiency symptoms of calcium, magnesium, manganese, molybdenum, copper, iron and zinc.26 Phytic acid remaining in these soy products greatly inhibits zinc and iron absorption; test animals fed SPI develop enlarged organs, particularly the pancreas and thyroid gland, and increased deposition of fatty acids in the liver.27
Yet soy protein isolate and textured vegetable protein are used extensively in school lunch programs, commercial baked goods, diet beverages and fast food products. They are heavily promoted in third world countries and form the basis of many food giveaway programs.
In spite of poor results in animal feeding trials, the soy industry has sponsored a number of studies designed to show that soy protein products can be used in human diets as a replacement for traditional foods.
An example is "Nutritional Quality of Soy Bean Protein Isolates: Studies in Children of Preschool Age", sponsored by the Ralston Purina Company.28 A group of Central American children suffering from malnutrition was first stabilized and brought into better health by feeding them native foods, including meat and dairy products. Then, for a two-week period, these traditional foods were replaced by a drink made of soy protein isolate and sugar.
All nitrogen taken in and all nitrogen excreted was measured in truly Orwellian fashion: the children were weighed naked every morning, and all excrement and vomit gathered up for analysis. The researchers found that the children retained nitrogen and that their growth was "adequate", so the experiment was declared a success.
Whether the children were actually healthy on such a diet, or could remain so over a long period, is another matter. The researchers noted that the children vomited "occasionally", usually after finishing a meal; that over half suffered from periods of moderate diarrhea; that some had upper respiratory infections; and that others suffered from rash and fever.
It should be noted that the researchers did not dare to use soy products to help the children recover from malnutrition, and were obliged to supplement the soy-sugar mixture with nutrients largely absent in soy products - notably, vitamins A, D and B12, iron, iodine and zinc.
Marketing The Perfect Food
"Just imagine you could grow the perfect food. This food not only would provide affordable nutrition, but also would be delicious and easy to prepare in a variety of ways. It would be a healthful food, with no saturated fat. In fact, you would be growing a virtual fountain of youth on your back forty."
The author is Dean Houghton, writing for The Furrow,2 a magazine published in 12 languages by John Deere. "This ideal food would help prevent, and perhaps reverse, some of the world's most dreaded diseases. You could grow this miracle crop in a variety of soils and climates. Its cultivation would build up, not deplete, the land...this miracle food already exists... It's called soy."
Just imagine. Farmers have been imagining - and planting more soy. What was once a minor crop, listed in the 1913 US Department of Agriculture (USDA) handbook not as a food but as an industrial product, now covers 72 million acres of American farmland. Much of this harvest will be used to feed chickens, turkeys, pigs, cows and salmon. Another large fraction will be squeezed to produce oil for margarine, shortenings and salad dressings.
Advances in technology make it possible to produce isolated soy protein from what was once considered a waste product - the defatted, high-protein soy chips - and then transform something that looks and smells terrible into products that can be consumed by human beings. Flavorings, preservatives, sweeteners, emulsifiers and synthetic nutrients have turned soy protein isolate, the food processors' ugly duckling, into a New Age Cinderella.
The new fairy-tale food has been marketed not so much for her beauty but for her virtues. Early on, products based on soy protein isolate were sold as extenders and meat substitutes - a strategy that failed to produce the requisite consumer demand. The industry changed its approach.
"The quickest way to gain product acceptability in the less affluent society," said an industry spokesman, "is to have the product consumed on its own merit in a more affluent society."3 So soy is now sold to the upscale consumer, not as a cheap, poverty food but as a miracle substance that will prevent heart disease and cancer, whisk away hot flushes, build strong bones and keep us forever young.
The competition - meat, milk, cheese, butter and eggs - has been duly demonised by the appropriate government bodies. Soy serves as meat and milk for a new generation of virtuous vegetarians.
Marketing Costs Money
This is especially when it needs to be bolstered with "research", but there's plenty of funds available. All soybean producers pay a mandatory assessment of one-half to one per cent of the net market price of soybeans. The total - something like US$80 million annually4 - supports United Soybean's program to "strengthen the position of soybeans in the marketplace and maintain and expand domestic and foreign markets for uses for soybeans and soybean products".
State soybean councils from Maryland, Nebraska, Delaware, Arkansas, Virginia, North Dakota and Michigan provide another $2.5 million for "research".5 Private companies like Archer Daniels Midland also contribute their share. ADM spent $4.7 million for advertising on Meet the Press and $4.3 million on Face the Nation during the course of a year.6
Public relations firms help convert research projects into newspaper articles and advertising copy, and law firms lobby for favorable government regulations. IMF money funds soy processing plants in foreign countries, and free trade policies keep soybean abundance flowing to overseas destinations.
The push for more soy has been relentless and global in its reach. Soy protein is now found in most supermarket breads. It is being used to transform "the humble tortilla, Mexico's corn-based staple food, into a protein-fortified 'super-tortilla' that would give a nutritional boost to the nearly 20 million Mexicans who live in extreme poverty".7 Advertising for a new soy-enriched loaf from Allied Bakeries in Britain targets menopausal women seeking relief from hot flushes. Sales are running at a quarter of a million loaves per week.8
The soy industry hired Norman Robert Associates, a public relations firm, to "get more soy products onto school menus".9 The USDA responded with a proposal to scrap the 30 per cent limit for soy in school lunches. The NuMenu program would allow unlimited use of soy in student meals. With soy added to hamburgers, tacos and lasagna, dieticians can get the total fat content below 30 per cent of calories, thereby conforming to government dictates. "With the soy-enhanced food items, students are receiving better servings of nutrients and less cholesterol and fat."
Soy milk has posted the biggest gains, soaring from $2 million in 1980 to $300 million in the US last year.10 Recent advances in processing have transformed the gray, thin, bitter, beany-tasting Asian beverage into a product that Western consumers will accept - one that tastes like a milkshake, but without the guilt.
Processing miracles, good packaging, massive advertising and a marketing strategy that stresses the products' possible health benefits account for increasing sales to all age groups. For example, reports that soy helps prevent prostate cancer have made soy milk acceptable to middle-aged men. "You don't have to twist the arm of a 55- to 60-year-old guy to get him to try soy milk," says Mark Messina. Michael Milken, former junk bond financier, has helped the industry shed its hippie image with well-publicized efforts to consume 40 grams of soy protein daily.
America today, tomorrow the world. Soy milk sales are rising in Canada, even though soy milk there costs twice as much as cow's milk. Soybean milk processing plants are sprouting up in places like Kenya.11 Even China, where soy really is a poverty food and whose people want more meat, not tofu, has opted to build Western-style soy factories rather than develop western grasslands for grazing animals.12
FDA Health Claim Challenged
On October 25, 1999 the US Food and Drug Administration (FDA) decided to allow a health claim for products "low in saturated fat and cholesterol" that contain 6.25 grams of soy protein per serving. Breakfast cereals, baked goods, convenience food, smoothie mixes and meat substitutes could now be sold with labels touting benefits to cardiovascular health, as long as these products contained one heaping teaspoon of soy protein per 100-gram serving.
The best marketing strategy for a product that is inherently unhealthy is, of course, a health claim.
"The road to FDA approval," writes a soy apologist, "was long and demanding, consisting of a detailed review of human clinical data collected from more than 40 scientific studies conducted over the last 20 years. Soy protein was found to be one of the rare foods that had sufficient scientific evidence not only to qualify for an FDA health claim proposal but to ultimately pass the rigorous approval process."29
The "long and demanding" road to FDA approval actually took a few unexpected turns. The original petition, submitted by Protein Technology International, requested a health claim for isoflavones, the estrogen-like compounds found plentifully in soybeans, based on assertions that "only soy protein that has been processed in a manner in which isoflavones are retained will result in cholesterol lowering".
In 1998, the FDA made the unprecedented move of rewriting PTI's petition, removing any reference to the phyto-estrogens and substituting a claim for soy protein - a move that was in direct contradiction to the agency's regulations. The FDA is authorized to make rulings only on substances presented by petition.
The abrupt change in direction was no doubt due to the fact that a number of researchers, including scientists employed by the US Government, submitted documents indicating that isoflavones are toxic.
The FDA had also received, early in 1998, the final British Government report on phytoestrogens, which failed to find much evidence of benefit and warned against potential adverse effects.30
Even with the change to soy protein isolate, FDA bureaucrats engaged in the "rigorous approval process" were forced to deal nimbly with concerns about mineral blocking effects, enzyme inhibitors, goitrogenicity, endocrine disruption, reproductive problems and increased allergic reactions from consumption of soy products.31
One of the strongest letters of protest came from Dr Dan Sheehan and Dr Daniel Doerge, government researchers at the National Center for Toxicological Research.32 Their pleas for warning labels were dismissed as unwarranted.
"Sufficient scientific evidence" of soy's cholesterol-lowering properties is drawn largely from a 1995 meta-analysis by Dr James Anderson, sponsored by Protein Technologies International and published in the New England Journal of Medicine.33
A meta-analysis is a review and summary of the results of many clinical studies on the same subject. Use of meta-analyses to draw general conclusions has come under sharp criticism by members of the scientific community.
"Researchers substituting meta-analysis for more rigorous trials risk making faulty assumptions and indulging in creative accounting," says Sir John Scott, President of the Royal Society of New Zealand. "Like is not being lumped with like. Little lumps and big lumps of data are being gathered together by various groups."34
There is the added temptation for researchers, particularly researchers funded by a company like Protein Technologies International, to leave out studies that would prevent the desired conclusions. Dr Anderson discarded eight studies for various reasons, leaving a remainder of twenty-nine.
The published report suggested that individuals with cholesterol levels over 250 mg/dl would experience a "significant" reduction of 7 to 20 per cent in levels of serum cholesterol if they substituted soy protein for animal protein. Cholesterol reduction was insignificant for individuals whose cholesterol was lower than 250 mg/dl.
In other words, for most of us, giving up steak and eating vegieburgers instead will not bring down blood cholesterol levels. The health claim that the FDA approved "after detailed review of human clinical data" fails to inform the consumer about these important details.
Research that ties soy to positive effects on cholesterol levels is "incredibly immature", said Ronald M. Krauss, MD, head of the Molecular Medical Research Program and Lawrence Berkeley National Laboratory.35 He might have added that studies in which cholesterol levels were lowered through either diet or drugs have consistently resulted in a greater number of deaths in the treatment groups than in controls - deaths from stroke, cancer, intestinal disorders, accident and suicide.36
Cholesterol-lowering measures in the US have fuelled a $60 billion per year cholesterol-lowering industry, but have not saved us from the ravages of heart disease.
Soy And Cancer
The new FDA ruling does not allow any claims about cancer prevention on food packages, but that has not restrained the industry and its marketers from making them in their promotional literature.
"In addition to protecting the heart," says a vitamin company brochure, "soy has demonstrated powerful anticancer benefits...the Japanese, who eat 30 times as much soy as North Americans, have a lower incidence of cancers of the breast, uterus and prostate."37
Indeed they do. But the Japanese, and Asians in general, have much higher rates of other types of cancer, particularly cancer of the esophagus, stomach, pancreas and liver.38 Asians throughout the world also have high rates of thyroid cancer.39 The logic that links low rates of reproductive cancers to soy consumption requires attribution of high rates of thyroid and digestive cancers to the same foods, particularly as soy causes these types of cancers in laboratory rats.
Just how much soy do Asians eat? A 1998 survey found that the average daily amount of soy protein consumed in Japan was about eight grams for men and seven for women - less than two teaspoons.40 The famous Cornell China Study, conducted by Colin T. Campbell, found that legume consumption in China varied from 0 to 58 grams per day, with a mean of about twelve.41
Assuming that two-thirds of legume consumption is soy, then the maximum consumption is about 40 grams, or less than three tablespoons per day, with an average consumption of about nine grams, or less than two teaspoons. A survey conducted in the 1930s found that soy foods accounted for only 1.5 per cent of calories in the Chinese diet, compared with 65 per cent of calories from pork.42 (Asians traditionally cooked with lard, not vegetable oil!)
Traditionally fermented soy products make a delicious, natural seasoning that may supply important nutritional factors in the Asian diet. But except in times of famine, Asians consume soy products only in small amounts, as condiments, and not as a replacement for animal foods - with one exception. Celibate monks living in monasteries and leading a vegetarian lifestyle find soy foods quite helpful because they dampen libido.
It was a 1994 meta-analysis by Mark Messina, published in Nutrition and Cancer, that fuelled speculation on soy's anticarcinogenic properties.43 Messina noted that in 26 animal studies, 65 per cent reported protective effects from soy. He conveniently neglected to include at least one study in which soy feeding caused pancreatic cancer - the 1985 study by Rackis.44 In the human studies he listed, the results were mixed.
A few showed some protective effect, but most showed no correlation at all between soy consumption and cancer rates. He concluded that "the data in this review cannot be used as a basis for claiming that soy intake decreases cancer risk". Yet in his subsequent book, The Simple Soybean and Your Health, Messina makes just such a claim, recommending one cup or 230 grams of soy products per day in his "optimal" diet as a way to prevent cancer.
Thousands of women are now consuming soy in the belief that it protects them against breast cancer. Yet, in 1996, researchers found that women consuming soy protein isolate had an increased incidence of epithelial hyperplasia, a condition that presages malignancies.45 A year later, dietary genistein was found to stimulate breast cells to enter the cell cycle - a discovery that led the study authors to conclude that women should not consume soy products to prevent breast cancer.46
Phytoestrogens: Panacea Or Poison?
The male species of tropical birds carries the drab plumage of the female at birth and 'colors up' at maturity, somewhere between nine and 24 months.
In 1991, Richard and Valerie James, bird breeders in Whangerai, New Zealand, purchased a new kind of feed for their birds - one based largely on soy protein.47 When soy-based feed was used, their birds 'colored up' after just a few months. In fact, one bird-food manufacturer claimed that this early development was an advantage imparted by the feed.
A 1992 ad for Roudybush feed formula showed a picture of the male crimson rosella, an Australian parrot that acquires beautiful red plumage at 18 to 24 months, already brightly colored at 11 weeks old.
Unfortunately, in the ensuing years, there was decreased fertility in the birds, with precocious maturation, deformed, stunted and stillborn babies, and premature deaths, especially among females, with the result that the total population in the aviaries went into steady decline.
The birds suffered beak and bone deformities, goiter, immune system disorders and pathological, aggressive behavior. Autopsy revealed digestive organs in a state of disintegration. The list of problems corresponded with many of the problems the Jameses had encountered in their two children, who had been fed soy-based infant formula.
Startled, aghast, angry, the Jameses hired toxicologist Mike Fitzpatrick. PhD, to investigate further. Dr Fitzpatrick's literature review uncovered evidence that soy consumption has been linked to numerous disorders, including infertility, increased cancer and infantile leukemia; and, in studies dating back to the 1950s,48 that genistein in soy causes endocrine disruption in animals.
Dr Fitzpatrick also analyzed the bird feed and found that it contained high levels of phytoestrogens, especially genistein. When the Jameses discontinued using soy-based feed, the flock gradually returned to normal breeding habits and behavior.
The Jameses embarked on a private crusade to warn the public and government officials about toxins in soy foods, particularly the endocrine-disrupting isoflavones, genistein and diadzen. Protein Technology International received their material in 1994.
In 1991, Japanese researchers reported that consumption of as little as 30 grams or two tablespoons of soybeans per day for only one month resulted in a significant increase in thyroid-stimulating hormone.49 Diffuse goiter and hypothyroidism appeared in some of the subjects and many complained of constipation, fatigue and lethargy, even though their intake of iodine was adequate.
In 1997, researchers from the FDA's National Center for Toxicological Research made the embarrassing discovery that the goitrogenic components of soy were the very same isoflavones.50
Twenty-five grams of soy protein isolate, the minimum amount PTI claimed to have cholesterol-lowering effects, contains from 50 to 70 mg of isoflavones. It took only 45 mg of isoflavones in premenopausal women to exert significant biological effects, including a reduction in hormones needed for adequate thyroid function. These effects lingered for three months after soy consumption was discontinued.51
One hundred grams of soy protein - the maximum suggested cholesterol-lowering dose, and the amount recommended by Protein Technologies International - can contain almost 600 mg of isoflavones,52 an amount that is undeniably toxic. In 1992, the Swiss health service estimated that 100 grams of soy protein provided the estrogenic equivalent of the Pill.53
In vitro studies suggest that isoflavones inhibit synthesis of estradiol and other steroid hormones.54 Reproductive problems, infertility, thyroid disease and liver disease due to dietary intake of isoflavones have been observed for several species of animals including mice, cheetah, quail, pigs, rats, sturgeon and sheep.55
It is the isoflavones in soy that are said to have a favorable effect on postmenopausal symptoms, including hot flushes, and protection from osteoporosis. Quantification of discomfort from hot flushes is extremely subjective, and most studies show that control subjects report reduction in discomfort in amounts equal to subjects given soy.56 The claim that soy prevents osteoporosis is extraordinary, given that soy foods block calcium and cause vitamin D deficiencies.
If Asians indeed have lower rates of osteoporosis than Westerners, it is because their diet provides plenty of vitamin D from shrimp, lard and seafood, and plenty of calcium from bone broths. The reason that Westerners have such high rates of osteoporosis is because they have substituted soy oil for butter, which is a traditional source of vitamin D and other fat-soluble activators needed for calcium absorption.
Birth Control Pills For Babies
But it was the isoflavones in infant formula that gave the Jameses the most cause for concern. In 1998, investigators reported that the daily exposure of infants to isoflavones in soy infant formula is 6 to11 times higher on a body-weight basis than the dose that has hormonal effects in adults consuming soy foods. Circulating concentrations of isoflavones in infants fed soy-based formula were 13,000 to 22,000 times higher than plasma estradiol concentrations in infants on cow's milk formula.57
Approximately 25 per cent of bottle-fed children in the US receive soy-based formula - a much higher percentage than in other parts of the Western world. Fitzpatrick estimated that an infant exclusively fed soy formula receives the estrogenic equivalent (based on body weight) of at least five birth control pills per day.58 By contrast, almost no phytoestrogens have been detected in dairy-based infant formula or in human milk, even when the mother consumes soy products.
Scientists have known for years that soy-based formula can cause thyroid problems in babies. But what are the effects of soy products on the hormonal development of the infant, both male and female?
Male infants undergo a "testosterone surge" during the first few months of life, when testosterone levels may be as high as those of an adult male. During this period, the infant is programmed to express male characteristics after puberty, not only in the development of his sexual organs and other masculine physical traits, but also in setting patterns in the brain characteristic of male behavior.
In monkeys, deficiency of male hormones impairs the development of spatial perception (which, in humans, is normally more acute in men than in women), of learning ability and of visual discrimination tasks (such as would be required for reading).59 It goes without saying that future patterns of sexual orientation may also be influenced by the early hormonal environment.
Male children exposed during gestation to diethylstilbestrol (DES), a synthetic estrogen that has effects on animals similar to those of phytoestrogens from soy, had testes smaller than normal on manturation.60
Learning disabilities, especially in male children, have reached epidemic proportions. Soy infant feeding - which began in earnest in the early 1970s - cannot be ignored as a probable cause for these tragic developments.
As for girls, an alarming number are entering puberty much earlier than normal, according to a recent study reported in the journal Pediatrics.61 Investigators found that one per cent of all girls now show signs of puberty, such as breast development or pubic hair, before the age of three; by age eight, 14.7 per cent of white girls and almost 50 per cent of African-American girls have one or both of these characteristics.
New data indicate that environmental estrogens such as PCBs and DDE (a breakdown product of DDT) may cause early sexual development in girls.62 In the 1986 Puerto Rico Premature Thelarche study, the most significant dietary association with premature sexual development was not chicken - as reported in the press - but soy infant formula.63
The consequences of this truncated childhood are tragic. Young girls with mature bodies must cope with feelings and urges that most children are not well-equipped to handle. And early maturation in girls is frequently a harbinger for problems with the reproductive system later in life, including failure to menstruate, infertility and breast cancer.
Parents who have contacted the Jameses recount other problems associated with children of both sexes who were fed soy-based formula, including extreme emotional behavior, asthma, immune system problems, pituitary insufficiency, thyroid disorders and irritable bowel syndrome - the same endocrine and digestive havoc that afflicted the Jameses' parrots.
Dissension In The Ranks
Organizers of the Third International Soy Symposium would be hard-pressed to call the conference an unqualified success. On the second day of the symposium, the London-based Food Commission and the Weston A. Price Foundation of Washington, DC, held a joint press conference, in the same hotel as the symposium, to present concerns about soy infant formula.
Industry representatives sat stony-faced through the recitation of potential dangers and a plea from concerned scientists and parents to pull soy-based infant formula from the market. Under pressure from the Jameses, the New Zealand Government had issued a health warning about soy infant formula in 1998; it was time for the American government to do the same.
On the last day of the symposium, presentations on new findings related to toxicity sent a well-oxygenated chill through the giddy helium hype. Dr Lon White reported on a study of Japanese Americans living in Hawaii, that showed a significant statistical relationship between two or more servings of tofu a week and "accelerated brain aging".64
Those participants who consumed tofu in mid-life had lower cognitive function in late life and a greater incidence of Alzheimer's disease and dementia. "What's more," said Dr White, "those who ate a lot of tofu, by the time they were 75 or 80 looked five years older".65 White and his colleagues blamed the negative effects on isoflavones - a finding that supports an earlier study in which postmenopausal women with higher levels of circulating estrogen experienced greater cognitive decline.66
Scientists Daniel Sheehan and Daniel Doerge, from the National Center for Toxicological Research, ruined PTI's day by presenting findings from rat feeding studies, indicating that genistein in soy foods causes irreversible damage to enzymes that synthesise thyroid hormones.67
"The association between soybean consumption and goiter in animals and humans has a long history," wrote Dr Doerge. "Current evidence for the beneficial effects of soy requires a full understanding of potential adverse effects as well."
Dr Claude Hughes reported that rats born to mothers that were fed genistein had decreased birth weights compared to controls, and onset of puberty occurred earlier in male offspring.68 His research suggested that the effects observed in rats "...will be at least somewhat predictive of what occurs in humans.
Question Marks Over GRAS Status
Lurking in the background of industry hype for soy is the nagging question of whether it's even legal to add soy protein isolate to food. All food additives not in common use prior to 1958, including casein protein from milk, must have GRAS (Generally Recognized As Safe) status. In 1972, the Nixon administration directed a re-examination of substances believed to be GRAS, in the light of any scientific information then available.
This re-examination included casein protein that became codified as GRAS in 1978. In 1974, the FDA obtained a literature review of soy protein because, as soy protein had not been used in food until 1959 and was not even in common use in the early 1970s, it was not eligible to have its GRAS status grandfathered under the provisions of the Food, Drug and Cosmetic Act.71
The scientific literature up to 1974 recognized many antinutrients in factory-made soy protein, including trypsin inhibitors, phytic acid and genistein. But the FDA literature review dismissed discussion of adverse impacts, with the statement that it was important for "adequate processing" to remove them.
Genistein could be removed with an alcohol wash, but it was an expensive procedure that processors avoided. Later studies determined that trypsin inhibitor content could be removed only with long periods of heat and pressure, but the FDA has imposed no requirements for manufacturers to do so.
The FDA was more concerned with toxins formed during processing, specifically nitrites and lysinoalanine.72 Even at low levels of consumption - averaging one-third of a gram per day at the time - the presence of these carcinogens was considered too great a threat to public health to allow GRAS status.
Soy protein did have approval for use as a binder in cardboard boxes, and this approval was allowed to continue, as researchers considered that migration of nitrites from the box into the food contents would be too small to constitute a cancer risk. FDA officials called for safety specifications and monitoring procedures before granting of GRAS status for food.
These were never performed. To this day, use of soy protein is codified as GRAS only for this limited industrial use as a cardboard binder. This means that soy protein must be subject to premarket approval procedures each time manufacturers intend to use it as a food or add it to a food.
Soy protein was introduced into infant formula in the early 1960s. It was a new product with no history of any use at all. As soy protein did not have GRAS status, premarket approval was required. This was not and still has not been granted. The key ingredient of soy infant formula is not recognized as safe.
The Next Asbestos?
"Against the backdrop of widespread praise...there is growing suspicion that soy - despite its undisputed benefits - may pose some health hazards," writes Marian Burros, a leading food writer for the New York Times. More than any other writer, Ms Burros's endorsement of a low-fat, largely vegetarian diet has herded Americans into supermarket aisles featuring soy foods.
Yet her January 26, 2000 article, "Doubts Cloud Rosy News on Soy", contains the following alarming statement: "Not one of the 18 scientists interviewed for this column was willing to say that taking isoflavones was risk free." Ms Burros did not enumerate the risks, nor did she mention that the recommended 25 daily grams of soy protein contain enough isoflavones to cause problems in sensitive individuals, but it was evident that the industry had recognized the need to cover itself.
Because the industry is extremely exposed...contingency lawyers will soon discover that the number of potential plaintiffs can be counted in the millions and the pockets are very, very deep. Juries will hear something like the following: "The industry has known for years that soy contains many toxins.
At first they told the public that the toxins were removed by processing. When it became apparent that processing could not get rid of them, they claimed that these substances were beneficial. Your government granted a health claim to a substance that is poisonous, and the industry lied to the public to sell more soy."
The "industry" includes merchants, manufacturers, scientists, publicists, bureaucrats, former bond financiers, food writers, vitamin companies and retail stores. Farmers will probably escape because they were duped like the rest of us. But they need to find something else to grow before the soy bubble bursts and the market collapses: grass-fed livestock, designer vegetables...or hemp to make paper for thousands and thousands of legal briefs.
Extracted from Nexus Magazine, Volume 7, Number 3 (April-May 2000)
About the Authors:
Sally Fallon is the author of Nourishing Traditions: The Cookbook that Challenges Politically Correct Nutrition and the Diet Dictocrats (1999, 2nd edition, New Trends Publishing, tel +1 877 707 1776 or +1 219 268 2601) and President of the Weston A. Price Foundation, Washington, DC (www.WestonAPrice.org)
Mary G. Enig, Ph.D., a nutritionist widely known for her research on the nutritional aspects of fats and oils, is a consultant, clinician, and the Director of the Nutritional Sciences Division of Enig Associates, Inc., Silver Spring, Maryland.
She received her PhD in Nutritional Sciences from the University of Maryland, College Park in 1984, taught a graduate course in nutrient-drug interactions for the University's Graduate Program in Nutritional Sciences, and held a Faculty Research Associateship from 1984 through 1991 with the Lipids Research Group in the Department of Chemistry and Biochemistry.
Dr. Enig is a Fellow of the American College of Nutrition, and a member of the American Institute of Nutrition. Her many years of experience as a "bench chemist" in the analysis of food fats and oils, provides a foundation for her active roles in food labeling and composition issues at the federal and state levels.
Dr. Enig is a Consulting Editor to the "Journal of the American College of Nutrition" and formerly served as a Contributing Editor to "Clinical Nutrition." She has published 14 scientific papers on the subject of food fats and oils, several chapters on nutrition for books, and presented over 35 scientific papers on food and nutrition topics.
She is the President of the Maryland Nutritionists Association, past President of the Coalition of Nutritionists of Maryland and was appointed by the Governor in 1986 to the Maryland State Advisory Council on Nutrition and served as the Chairman of the Health Subcommittee until the Council was disbanded in 1988.
COMMENT:
Sally Fallon and Dr. Enig are to be highly commended for this much needed soy update. Together they have compiled the most definitive document to date on why one should avoid soy. This is a MAJOR work and I am hoping to promote it for the national media attention that it deserves.
Another article on How Much Soy Asians Actually Eat
ENDNOTES:
1. Program for the Third International Symposium on the Role of Soy in Preventing and Treating Chronic Disease, Sunday, October 31, through Wednesday, November 3, 1999, Omni Shoreham Hotel, Washington, DC.
2. Houghton, Dean, "Healthful Harvest", The Furrow, January 2000, pp. 10-13.
3. Coleman, Richard J., "Vegetable Protein - A Delayed Birth?" Journal of the American Oil Chemists' Society 52:238A, April 1975.
4. See www/unitedsoybean.org.
5. These are listed in www.soyonlineservice.co.nz.
6. Wall Street Journal, October 27, 1995.
7. Smith, James F., "Healthier tortillas could lead to healthier Mexico", Denver Post, August 22, 1999, p. 26A.
8. "Bakery says new loaf can help reduce hot flushes", Reuters, September 15, 1997.
9. "Beefing Up Burgers with Soy Products at School", Nutrition Week, Community Nutrition Institute, Washington, DC, June 5, 1998, p. 2.
10. Urquhart, John, "A Health Food Hits Big Time", Wall Street Journal, August 3, 1999, p. B1
11. "Soyabean Milk Plant in Kenya", Africa News Service, September 1998.
12. Simoons, Frederick J., Food in China: A Cultural and Historical Inquiry, CRC Press, Boca Raton, 1991, p. 64.
13. Katz, Solomon H., "Food and Biocultural Evolution: A Model for the Investigation of Modern Nutritional Problems", Nutritional Anthropology, Alan R. Liss Inc., 1987, p. 50.
14. Rackis, Joseph J. et al., "The USDA trypsin inhibitor study. I. Background, objectives and procedural details", Qualification of Plant Foods in Human Nutrition, vol. 35, 1985.
15. Van Rensburg et al., "Nutritional status of African populations predisposed to esophageal cancer", Nutrition and Cancer, vol. 4, 1983, pp. 206-216; Moser, P.B. et al., "Copper, iron, zinc and selenium dietary intake and status of Nepalese lactating women and their breastfed infants", American Journal of Clinical Nutrition 47:729-734, April 1988; Harland, B.F. et al., "Nutritional status and phytate: zinc and phytate X calcium: zinc dietary molar ratios of lacto-ovovegetarian Trappist monks: 10 years later", Journal of the American Dietetic Association 88:1562-1566, December 1988.
16. El Tiney, A.H., "Proximate Composition and Mineral and Phytate Contents of Legumes Grown in Sudan", Journal of Food Composition and Analysis (1989) 2:6778.
17. Ologhobo, A.D. et al., "Distribution of phosphorus and phytate in some Nigerian varieties of legumes and some effects of processing", Journal of Food Science 49(1):199-201, January/February 1984.
18. Sandstrom, B. et al., "Effect of protein level and protein source on zinc absorption in humans", Journal of Nutrition 119(1):48-53, January 1989; Tait, Susan et al., "The availability of minerals in food, with particular reference to iron", Journal of Research in Society and Health 103(2):74-77, April 1983.
19. Phytate reduction of zinc absorption has been demonstrated in numerous studies. These results are summarised in Leviton, Richard, Tofu, Tempeh, Miso and Other Soyfoods: The 'Food of the Future' - How to Enjoy Its Spectacular Health Benefits, Keats Publishing, Inc., New Canaan, CT, USA, 1982, p. 1415.
20. Mellanby, Edward, "Experimental rickets: The effect of cereals and their interaction with other factors of diet and environment in producing rickets", Journal of the Medical Research Council 93:265, March 1925; Wills, M.R. et al., "Phytic Acid and Nutritional Rickets in Immigrants", The Lancet, April 8,1972, pp. 771-773.
21. Rackis et al., ibid.
22. Rackis et al., ibid., p. 232.
23. Wallace, G.M., "Studies on the Processing and Properties of Soymilk", Journal of Science and Food Agriculture 22:526-535, October 1971.
24. Rackis, et al., ibid., p. 22; "Evaluation of the Health Aspects of Soy Protein Isolates as Food Ingredients", prepared for FDA by Life Sciences Research Office, Federation of American Societies for Experimental Biology (9650 Rockville Pike, Bethesda, MD 20014), USA, Contract No. FDA 223-75-2004, 1979.
25. See www/truthinlabeling.org.
26. Rackis, Joseph, J., "Biological and Physiological Factors in Soybeans", Journal of the American Oil Chemists' Society 51:161A-170A, January 1974.
27. Rackis, Joseph J. et al., "The USDA trypsin inhibitor study", ibid.
28. Torum, Benjamin, "Nutritional Quality of Soybean Protein Isolates: Studies in Children of Preschool Age", in Soy Protein and Human Nutrition, Harold L Wilcke et al. (eds), Academic Press, New York, 1979.
29. Zreik, Marwin, CCN, "The Great Soy Protein Awakening", Total Health 32(1), February 2000.
30. IEH Assessment on Phytoestrogens in the Human Diet, Final Report to the Ministry of Agriculture, Fisheries and Food, UK, November 1997, p. 11.
31. Food Labeling: Health Claims: Soy Protein and Coronary Heart Disease, Food and Drug Administration 21 CFR, Part 101 (Docket No. 98P-0683).
32. Sheegan, Daniel M. and Daniel R Doerge, Letter to Dockets Management Branch (HFA-305), February 18, 1999.
33. Anderson, James W. et al., "Meta-analysis of the Effects of Soy Protein Intake on Serum Lipids", New England Journal of Medicine (1995) 333:(5):276-282.
34. Guy, Camille, "Doctors warned against magic, quackery", New Zealand Herald, September 9, 1995, section 8, p. 5.
35. Sander, Kate and Hilary Wilson, "FDA approves new health claim for soy, but litte fallout expected for dairy", Cheese Market News, October 22, 1999, p. 24.
36. Enig, Mary G. and Sally Fallon, "The Oiling of America", NEXUS Magazine, December 1998-January 1999 and February-March 1999; also available at www.WestonAPrice.org.
37. Natural Medicine News (L & H Vitamins, 32-33 47th Avenue, Long Island City, NY 11101), USA, January/February 2000, p. 8.
38. Harras, Angela (ed.), Cancer Rates and Risks, National Institutes of Health, National Cancer Institute, 1996, 4th edition.
39. Searle, Charles E. (ed.), Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, 1976.
40. Nagata, C. et al., Journal of Nutrition (1998) 128:209-213.
41. Campbell, Colin T. et al., The Cornell Project in China.
42. Chang, K.C. (ed.), Food in Chinese Culture: Anthropological and Historical Perspectives, New Haven, 1977.
43. Messina, Mark J. et al., "Soy Intake and Cancer Risk: A Review of the In Vitro and In Vivo Data", Nutrition and Cancer (1994) 21(2):113-131.
44. Rackis et al, "The USDA trypsin inhibitor study", ibid.
45. Petrakis, N.L. et al., "Stimulatory influence of soy protein isolate on breast secretion in pre- and post-menopausal women", Cancer Epid. Bio. Prev. (1996) 5:785-794.
46. Dees, C. et al., "Dietary estrogens stimulate human breast cells to enter the cell cycle", Environmental Health Perspectives (1997) 105(Suppl. 3):633-636.
47. Woodhams, D.J., "Phytoestrogens and parrots: The anatomy of an investigation", Proceedings of the Nutrition Society of New Zealand (1995) 20:22-30.
48. Matrone, G. et al., "Effect of Genistin on Growth and Development of the Male Mouse", Journal of Nutrition (1956) 235-240.
49. Ishizuki, Y. et al., "The effects on the thyroid gland of soybeans administered experimentally in healthy subjects", Nippon Naibunpi Gakkai Zasshi (1991) 767:622-629.
50. Divi, R.L. et al., "Anti-thyroid isoflavones from the soybean", Biochemical Pharmacology (1997) 54:1087-1096.
51. Cassidy, A. et al., "Biological Effects of a Diet of Soy Protein Rich in Isoflavones on the Menstrual Cycle of Premenopausal Women", American Journal of Clinical Nutrition (1994) 60:333-340.
52. Murphy, P.A., "Phytoestrogen Content of Processed Soybean Foods", Food Technology, January 1982, pp. 60-64.
53. Bulletin de L'Office Fédéral de la Santé Publique, no. 28, July 20, 1992.
54. Keung, W.M., "Dietary oestrogenic isoflavones are potent inhibitors of B-hydroxysteroid dehydrogenase of P. testosteronii", Biochemical and Biophysical Research Committee (1995) 215:1137-1144; Makela, S.I. et al., "Estrogen-specific 12 B-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens", PSEBM (1995) 208:51-59.
55. Setchell, K.D.R. et al., "Dietary oestrogens - a probable cause of infertility and liver disease in captive cheetahs", Gastroenterology (1987) 93:225-233; Leopald, A.S., "Phytoestrogens: Adverse effects on reproduction in California Quail," Science (1976) 191:98-100; Drane, H.M. et al., "Oestrogenic activity of soya-bean products", Food, Cosmetics and Technology (1980) 18:425-427; Kimura, S. et al., "Development of malignant goiter by defatted soybean with iodine-free diet in rats", Gann. (1976) 67:763-765; Pelissero, C. et al., "Oestrogenic effect of dietary soybean meal on vitellogenesis in cultured Siberian Sturgeon Acipenser baeri", Gen. Comp. End. (1991) 83:447-457; Braden et al., "The oestrogenic activity and metabolism of certain isoflavones in sheep", Australian J. Agricultural Research (1967) 18:335-348.
56. Ginsburg, Jean and Giordana M. Prelevic, "Is there a proven place for phytoestrogens in the menopause?", Climacteric (1999) 2:75-78.
57. Setchell, K.D. et al., "Isoflavone content of infant formulas and the metabolic fate of these early phytoestrogens in early life", American Journal of Clinical Nutrition, December 1998 Supplement, 1453S-1461S.
58. Irvine, C. et al., "The Potential Adverse Effects of Soybean Phytoestrogens in Infant Feeding", New Zealand Medical Journal May 24, 1995, p. 318.
59. Hagger, C. and J. Bachevalier, "Visual habit formation in 3-month-old monkeys (Macaca mulatta): reversal of sex difference following neonatal manipulations of androgen", Behavior and Brain Research (1991) 45:57-63.
60. Ross, R.K. et al., "Effect of in-utero exposure to diethylstilbestrol on age at onset of puberty and on post-pubertal hormone levels in boys", Canadian Medical Association Journal 128(10):1197-8, May 15, 1983.
61. Herman-Giddens, Marcia E. et al., "Secondary Sexual Characteristics and Menses in Young Girls Seen in Office Practice: A Study from the Pediatric Research in Office Settings Network", Pediatrics 99(4):505-512, April 1997.
62. Rachel's Environment & Health Weekly 263, "The Wingspread Statement", Part 1, December 11, 1991; Colborn, Theo, Dianne Dumanoski and John Peterson Myers, Our Stolen Future, Little, Brown & Company, London, 1996.
63. Freni-Titulaer, L.W., "Premature Thelarch in Puerto Rico: A search for environmental factors", American Journal of Diseases of Children 140(12):1263-1267, December 1986.
64. White, Lon, "Association of High Midlife Tofu Consumption with Accelerated Brain Aging", Plenary Session #8: Cognitive Function, The Third International Soy Symposium, November 1999, Program, p. 26.
65. Altonn, Helen, "Too much tofu induces 'brain aging', study shows", Honolulu Star-Bulletin, November 19, 1999.
66. Journal of the American Geriatric Society (1998) 46:816-21.
67. Doerge, Daniel R., "Inactivation of Thyroid Peroxidase by Genistein and Daidzein in Vitro and in Vivo; Mechanism for Anti-Thyroid Activity of Soy", presented at the November 1999 Soy Symposium in Washington, DC, National Center for Toxicological Research, Jefferson, AR 72029, USA.
68. Hughes, Claude, Center for Women's Health and Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA.
69. Soy Intake May Affect Fetus", Reuters News Service, November 5, 1999.
70. "Vegetarian diet in pregnancy linked to birth defect", BJU International 85:107-113, January 2000.
71. FDA ref 72/104, Report FDABF GRAS - 258.
72. "Evaluation of the Health Aspects of Soy Protein Isolates as Food Ingredients", prepared for FDA by Life Sciences Research Office, Federation of American Societies for Experimental Biology (FASEB) (9650 Rockville Pike, Bethesda, MD 20014, USA), Contract No, FDA 223-75-2004, 1979.
There is no reason to assume that there will be gross malformations of fetuses but there may be subtle changes, such as neurobehavioral attributes, immune function and sex hormone levels." The results, he said, "could be nothing or could be something of great concern...if mom is eating something that can act like sex hormones, it is logical to wonder if that could change the baby's development".69
A study of babies born to vegetarian mothers, published in January 2000, indicated just what those changes in baby's development might be. Mothers who ate a vegetarian diet during pregnancy had a fivefold greater risk of delivering a boy with hypospadias, a birth defect of the penis.70 The authors of the study suggested that the cause was greater exposure to phytoestrogens in soy foods popular with vegetarians.
Problems with female offspring of vegetarian mothers are more likely to show up later in life. While soy's estrogenic effect is less than that of diethylstilbestrol (DES), the dose is likely to be higher because it's consumed as a food, not taken as a drug. Daughters of women who took DES during pregnancy suffered from infertility and cancer when they reached their twenties.